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Abstract

Given any two vertices u, v of a random geometric graph G (n, r), denote by

dE(u, v) their Euclidean distance and by dG(u, v) their graph distance. The

problem of finding upper bounds on dG(u, v) conditional on dE(u, v) that

hold asymptotically almost surely has received quite a bit of attention in the

literature. In this paper, we improve the known upper bounds for values

of r = ω(
√

logn) (i.e. for r above the connectivity threshold). Our result

also improves the best known estimates on the diameter of random geometric

graphs. We also provide a lower bound on dG(u, v) conditional on dE(u, v).
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1. Introduction

Given a positive integer n and a non-negative real function r = r(n), a random

geometric graph G on n vertices and radius r is defined as follows. The vertex set
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V = V (G) is obtained by choosing n points independently and uniformly at random

in the square Sn = [−
√
n/2,

√
n/2]

2
(Note that, with probability 1, no point in Sn is

chosen more than once, and thus we assume |V | = n). For notational purposes, we

identify each vertex v ∈ V with its corresponding geometric position v = (xv, yv) ∈ Sn,

where xv and yv denote the usual x- and y-coordinates in Sn. For every two points

u, v ∈ Sn, we write dE(u, v) for their Euclidean distance. Finally, the edge set E =

E(G) is constructed by connecting each pair of vertices u, v ∈ V by an edge if and only

if dE(u, v) ≤ r. We denote this model of random geometric graphs by G (n, r), and

use the notation G ∈ G (n, r) (or often simply G (n, r)) to refer to a random outcome

of this distribution. We will always assume that r ≤
√

2n, as for r ≥
√

2n the graph

obtained is always a clique.

Random geometric graphs were first introduced in a slightly different setting by

Gilbert [3] to model the communications between radio stations. Since then, several

closely related variants of these graphs have been widely used as a model for wireless

communication, and have also been extensively studied from a mathematical point

of view. The basic reference on random geometric graphs is the monograph by Pen-

rose [10] (see [11] for a more recent survey).

The properties of G (n, r) are usually investigated from an asymptotic perspective, as

n grows to infinity and r = r(n). Throughout the paper, we use the following standard

notation for the asymptotic behavior of sequences of non-negative numbers an and bn:

an = O(bn) if lim supn→∞ an/bn ≤ C < +∞; an = Ω(bn) if bn = O(an); an = Θ(bn) if

an = O(bn) and an = Ω(bn); an = o(bn) if limn→∞ an/bn = 0; and an = ω(bn) if bn =

o(an). We also use an � bn and bn � an to denote an = o(bn). Finally, a sequence of

events Hn holds asymptotically almost surely (a.a.s.) if limn→∞ Pr(Hn) = 1.

It is well known that rc =
√

log n/π is a sharp threshold function for the connectivity

of a random geometric graph (see e.g. [4, 9]). This means that for every ε > 0, if

r ≤ (1−ε)rc, then G (n, r) is a.a.s. disconnected, whilst if r ≥ (1 +ε)rc, then it is a.a.s.

connected.

Given a connected graph G, we define the graph distance between two vertices u

and v, denoted by dG(u, v), as the number of edges on a shortest path from u to

v. Observe first that any pair of vertices u and v must satisfy dG(u, v) ≥ dE(u, v)/r

deterministically by the triangle inequality, since each edge of a geometric graph has
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Figure 1: Graph distance vs. Euclidean distance between two points u and v in V

length at most r. The goal of this paper is to provide upper and lower bounds that

hold a.a.s. for the graph distance of two vertices in terms of their Euclidean distance

and in terms of r (see Figure 1).

Related work. This particular problem has risen quite a bit of interest in recent

years. Given any two vertices u, v ∈ V , most of the work related to this problem has

been devoted to study upper bounds on dG(u, v) in terms of dE(u, v) and r, that hold

a.a.s. Ellis, Martin and Yan [2] showed that there exists some large constant K such

that for every r ≥ (1 + ε)rc, G ∈ G (n, r) satisfies a.a.s. the following property: for

every u, v ∈ V such that dE(u, v) > r,

dG(u, v) ≤ K · dE(u, v)

r
. (1.1)

Their result is stated in the unit ball random geometric graph model, but it can be

easily adapted into our setting. This result was extended by Bradonjic et al. [1] for the

range of r for which G (n, r) has a giant component a.a.s., under the extra condition

that dE(u, v) = Ω(log7/2 n/r2). Friedrich, Sauerwald and Stauffer [6] improved this last

result by showing that the result holds a.a.s. for every u and v satisfying dE(u, v) =

ω(log n/r). They also proved that if r = o(rc), a linear upper bound of dG(u, v) in

terms of dE(u, v)/r is no longer possible. In particular, a.a.s. there exist vertices u and

v with dE(u, v) ≤ 3r and dG(u, v) = Ω(logn/r2).

The motivation for the study of this problem stems from the fact that these results

provide upper bounds for the diameter of G ∈ G (n, r), denoted by diam(G), that hold

a.a.s., and the runtime complexity of many algorithms can often be bounded from

above in terms of the diameter of G. For a concrete example, we refer to the problem

of broadcasting information (see [1, 6]).

One of the important achievements of our paper is to show that one can take the

constant K for which (1.1) holds as K = 1 + o(1) a.a.s., provided that r = ω(rc). By

the aforementioned result in [6], we know that the statement is false if r = o(rc).
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A similar problem has been studied by Muthukrishnan and Pandurangan [8]. They

proposed a new technique to study several problems on random geometric graphs —

the so called Bin-Covering technique — which tries to cover the endpoints of a path by

bins. They consider, among others, the problem of determining DG(u, v), which is the

length of the shortest Euclidean path connecting u and v. Recently, Mehrabian and

Wormald [7] studied a similar problem to the one in [8]. They deploy n points uniformly

in [0, 1]2, and connect any pair of points with probability p = p(n), independently of

their distance. In this model, they determine the ratio of DG(u, v) and dE(u, v) as a

function of p.

The following theorem is the main result of our paper.

Theorem 1.1. Let G ∈ G (n, r) be a random geometric graph on n vertices and radius

0 < r ≤
√

2n. A.a.s., for every pair of vertices u, v ∈ V (G) with dE(u, v) > r (as

otherwise the statement is trivial) we have:

(i) if dE(u, v) ≥ max
{

12(log n)3/2/r, 21r log n
}

, then

dG(u, v) ≥

⌊
dE(u, v)

r

(
1 +

1

2 (rdE(u, v))
2/3

)⌋
;

(ii) if r ≥ 224
√

log n, then

dG(u, v) ≤
⌈
dE(u, v)

r

(
1 + γr−4/3

)⌉
,

where

γ = γ(u, v) = max

{
1358

(
3r log n

r + dE(u, v)

)2/3

,
4 · 106 log2 n

r8/3
, 300002/3

}
.

In order to prove (i), we first observe that all the short paths between two points

must lie in a certain rectangle. Then we show that, by restricting the construction of

the path on that rectangle, no very short path exists. For the proof of (ii) we proceed

similarly. We restrict our problem to finding a path contained in a narrow strip. In

this case, we show that a relatively short path can be constructed. We believe that the

ideas in the proof can be easily extended to show the analogous result for d-dimensional

random geometric graphs for all fixed d ≥ 2.
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Remark 1.1. (1) Note that the condition dE(u, v) ≥ max{12(log n)3/2/r, 21r log n}

in the lower bound of (i) can be replaced by dE(u, v) ≥ 21r log n if r ≥
√

4/7(log n)1/4,

and by dE(u, v) ≥ 12(log n)3/2/r if r ≤
√

4/7(log n)1/4. We do not know whether this

condition can be made less restrictive, besides improving the multiplicative constants

involved (which we did not attempt to optimize).

(2) Similarly, the constant 224 in the condition r ≥ 224
√

log n of (ii) (as well as

those in the definition of γ) is not optimized either, and could be made slightly smaller.

However, our method as is cannot be extended all the way down to r ≥
√

log n/π = rc.

(3) Moreover, the error term in part (i) is
(
2(rdE(u, v))2/3

)−1
= O(1/ log n) = o(1).

(4) Finally, the error term in (ii) is

γr−4/3 = Θ

(
max

{(
log n

r2 + rdE(u, v)

)2/3

,

(√
log n

r

)4

, r−4/3

})
,

which is o(1) iff r = ω(
√

log n) = ω(rc). Hence, for r = ω(rc), statement (ii) implies

that a.a.s.

dG(u, v) ≤
⌈

(1 + o(1))
dE(u, v)

r

⌉
,

thus improving the result in [2].

Theorem 1.1 gives an upper bound on the diameter as a corollary. First, observe

that dE(u, v) ≤
√

2n. From Theorem 10 in [2] for the particular case d = 2, one can

deduce that if r ≥ (1 + ε)rc a.a.s.

diam(G) ≤
√

2n

r

(
1 +O

(√
log log n

log n

))
. (1.2)

Directly from Theorem 1.1 we have that, for r ≥ 224
√

log n,

diam(G) ≤

⌈√
2n

r

(
1 + γ̂r−4/3

)⌉
, (1.3)

where

γ̂ = Θ

((
r log n√

n

)2/3

+
log2 n

r8/3
+ 1

)
.

(In fact, (1.3) holds for all r ≥ (1 + ε)rc as a consequence of (1.2)). From straight-

forward computations, one can check that (1.3) improves (1.2) provided that r =

Ω

(
log5/8 n

(log log n)1/8

)
.
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On the other hand, for the lower bound on the diameter, observe the following: for

any function ω growing arbitrarily slowly with n, we can a.a.s. find two vertices u and

v, each at distance at most ω from one corner (opposite from each other) of the square

Sn. For such two vertices, we trivially (and deterministically) have

diam(G) ≥ dG(u, v) ≥

⌈√
2n
(
1−Θ(ω/

√
n)
)

r

⌉
(1.4)

Assuming that
√

log3 n/n � r �
√
n/ log n, our bound from Theorem 1.1 applied to

these vertices gives that a.a.s.

diam(G) ≥ dG(u, v) ≥

⌊√
2n
(
1−Θ(ω/

√
n)
)

r

(
1 + Θ(r−2/3n−1/3)

)⌋

≥

⌈√
2n
(
1−Θ(ω/

√
n) + Θ(r−2/3n−1/3)

)
r

− 1

⌉
. (1.5)

Assuming the additional constraint r � n1/10, we have that r−2/3n−1/3 � r/
√
n, and

also r−2/3n−1/3 � ω/
√
n (for ω tending to infinity sufficiently slowly). In this case,

our bound in (1.5) improves upon the trivial lower bound (1.4), and can be written as

diam(G) ≥

⌊√
2n

r

(
1 + Θ(r−2/3n−1/3)

)⌋
. (1.6)

Note that this is a.a.s. still valid if we drop the constraint r �
√

log3 n/n, since

for r = O

(√
log3 n/n

)
the random geometric graph is a.a.s. disconnected (and has

infinite diameter). Hence, by (1.3) and (1.6), we obtain the following corollary:

Corollary 1. Let G ∈ G (n, r) be a random geometric graph on n vertices and radius

0 < r ≤
√

2n. A.a.s. we have:

(i) if r ≥ (1 + ε)rc, then

diam(G) ≤

⌈√
2n

r

(
1 + γ̂r−4/3

)⌉
,

where

γ̂ = Θ

((
r log n√

n

)2/3

+
log2 n

r8/3
+ 1

)
.

(ii) if r � n1/10, then

diam(G) ≥

⌊√
2n

r

(
1 + Θ(r−2/3n−1/3)

)⌋
.
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2. Proof of Theorem 1.1

In order to simplify the proof of Theorem 1.1 we will make use of a technique known

as de-Poissonization, which has many applications in geometric probability (see for

ex. [10] for a detailed account of the subject). Here we sketch it.

Consider the following related model of a random geometric graph G with two

distinguished vertices u, v. The vertex set of G is V = V (G) = {u, v} ∪ V ′, where

the position of u and v is selected independently and uniformly at random in Sn, and

where V ′ is a set obtained from a homogeneous Poisson point process of intensity 1

in the square Sn of area n. Observe that V ′ consists of N points in the square Sn
chosen independently and uniformly at random, where N is a Poisson random variable

of mean n. Exactly as we did for the model G (n, r), we connect u1, u2 ∈ V by an edge

if and only if dE(u1, u2) ≤ r. We denote this new model by G̃u,v(n, r).

The main advantage of defining V ′ = V \ {u, v} as a Poisson point process is

motivated by the following two properties: the number of points of V ′ that lie in

any region A ⊆ Sn of area a has a Poisson distribution with mean a; and the number

of points of V ′ in disjoint regions of Sn are independently distributed. Moreover,

conditional on N = n−2, the distribution of G̃u,v(n, r) is the one of G (n, r). Therefore,

since Pr(N = n − 2) = Θ(1/
√
n), any event holding in G̃u,v(n, r) with probability at

least 1−o(fn) must hold in G (n, r) with probability at least 1−o(fn
√
n). We make use

of this property throughout the article, and do all the analysis for a graphG ∈ G̃u,v(n, r)

or related models of Poisson point processes.

We will need the following concentration inequality for the sum of independently

and identically distributed exponential random variables. For the sake of completeness

we provide the proof here.

Lemma 2.1. Let X1, . . . , Xm be independent exponential random variables of param-

eter λ > 0 (i.e. expectation 1/λ) and let X = X1 + · · · + Xm. Then, for every ε > 0

we have

Pr
(
X ≥ (1 + ε)E(X)

)
≤
(

1 + ε

eε

)m
,

and for any 0 < ε < 1 we have

Pr
(
X ≤ (1− ε)E(X)

)
≤
(
(1− ε)eε

)m ≤ e−ε2m/2.
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Proof. Let us prove the bound for the upper tail. The bound for the lower tail is

proved in a similar way and its proof is omitted.

We have EX = mEX1 = m/λ. By Markov’s inequality, for every 0 < β < λ and

every ε > 0 we have

Pr(X ≥ (1 + ε)EX) = Pr(eβX ≥ eβ(1+ε)m/λ) ≤
∏

E(eβXi)

eβ(1+ε)m/λ
= (ϕX1(β))me−β(1+ε)m/λ ,

where ϕX1(β) = E(eβX1) = λ
λ−β is the moment-generating function of an exponentially

distributed random variable with parameter λ. Thus,

Pr(X ≥ (1 + ε)EX) ≤
(

λ

λ− β

)m
e−β(1+ε)m/λ

Now we set β = ε
1+ελ to obtain

Pr(X ≥ (1 + ε)EX) ≤
(

1 + ε

eε

)m
.

�

2.1. Proof of statement (i)

In this subsection we prove the lower bound in Theorem 1.1. For every t ≥ 0, we

introduce the following model of infinite random geometric graphs. The vertex set is

constructed by adding two vertices u = (0, 0) and v = (t, 0) to a homogeneous Poisson

point process of intensity 1 in the infinite plane R2. We denote this new model by

G̃∞u,v(r, t).

The main task in the sequel is to show that, for any t ≥ max
{

12(log n)3/2/r, 21r log n
}

,

the lower bound in part (i) of Theorem 1.1 holds with probability at least 1− o(n−5/2)

in G̃∞u,v(r, t), for the distinguished vertices u = (0, 0) and v = (t, 0). Combining this

with an appropriate de-Poissonization argument will allow us to conclude the desired

result for G (n, r).

Our next lemma shows that short paths connecting u and v are contained in small

strips. The lemma is stated in the more general context of a deterministic geometric

graph G = (V,E) of radius r, where the vertex set V is an arbitrary subset of points in

R2 (containing u and v) and edges connect (as usual) every pair of vertices at Euclidean

distance at most r. For a given r > 0, for every k ∈ N and α > 0, consider the rectangle

R(k, α) =

[
−α2

kr
, kr

]
× [−α, α] .
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Lemma 2.2. Given any r, t, α > 0 and any k ∈ N satisfying t ≥ kr − 2α2

kr , let G be a

geometric graph of radius r in R2, and suppose that u = (0, 0) and v = (t, 0) are two

vertices of G. Then all paths of length at most k from u to v are contained in R(k, α).

Proof. If there is no path of length at most k from u to v, the statement of the

lemma is trivially true. Thus, we suppose that P = (u = z0, z1, . . . , z` = v) is a path

of length ` ≤ k, where zi = (xi, yi) for every 0 ≤ i ≤ `. Also, note that it suffices to

prove the lemma for α satisfying t = kr− 2α2

kr , since this trivially implies the statement

for larger α. In particular, we have α2 < (kr)2/2.

Write x+ = max{xi : 0 ≤ i ≤ `} and x− = min{xi : 0 ≤ i ≤ `}. It is clear that

x+ ≤ `r ≤ kr since every edge has length at most r. Let 0 ≤ j ≤ ` be such that

xj = x− and observe that x− ≤ x0 = 0. Then

kr ≥ dE(u, zj) + dE(zj , v) ≥ −x− + (t− x−) ≥ kr − 2

(
x− +

α2

kr

)
,

and we obtain x− ≥ −α2/(kr).

Now write y+ = max{yi : 0 ≤ i ≤ `} and y− = min{yi : 0 ≤ i ≤ `}. We will show

that y+ ≤ α and that y− ≥ −α. For every 0 ≤ i ≤ `, we have

kr ≥ dE(u, zi) + dE(zi, v) =
√
x2i + y2i +

√
(t− xi)2 + y2i ≥

√
t2 + 4y2i ,

where we used the fact that the left-hand side of the last inequality is minimized at

xi = t/2. Using that t ≥ kr − 2α2

kr , we obtain

(kr)2 ≥ t2 + 4y2i ≥
(
kr − 2α2

kr

)2

+ 4y2i .

Thus, for every 0 ≤ i ≤ `, we have |yi| ≤ α
√

1− α2/(kr)2 ≤ α, and so in particular

−α ≤ y− ≤ y+ ≤ α. Using the bounds on x+, x−, y+ and y−, we conclude that P is

contained in R(k, α). �

Proposition 2.1. For every t > r, let G ∈ G̃∞u,v(r, t) be a random geometric graph on

R2 with additional vertices u = (0, 0) and v = (t, 0). Then, for every 0 < δ < 2−1/3,

we have that

Pr

(
dG(u, v) ≤

⌊
t

r

(
1 +

δ

(tr)2/3

)⌋)
≤ (1 + o(1))t

r
exp

(
−
√
δ/2(tr)2/3

)
+ exp

(
−(1−

√
2δ3 − o(1))2

t

2r

)
.

(2.1)



10 Dı́az, Mitsche, Perarnau and Pérez-Giménez

Figure 2: Example of some values of xi and their corresponding ai (i ∈ {1, 2, 3}).

Proof. We first set

k =

⌊
t

r

(
1 +

δ

(tr)2/3

)⌋
and α =

√
δ

2

(
k3r2

t

)1/3

.

Observe that since t > r, we have k ≥ 1. Let A1 the event that dG(u, v) ≤ k; that is,

there exists a path P in G̃∞u,v(r, t) from u to v of length at most k. Our goal is to show

that the probability of A1 is small.

Let x1 be the largest x-coordinate of the vertices inside the rectangle R1 = [0, r]×

[−α, α] (possibly x1 = 0 if u is the only vertex in R1). Define the random variable

a1 = r − x1. We proceed similarly for every 2 ≤ i ≤ k. We define xi as follows: if

Ri = (xi−1 + ai−1, xi−1 + r]× [−α, α] is non-empty, let xi be the largest x-coordinate

of the vertices inside Ri; otherwise, set xi = xi−1 + ai−1 (see Figure 2). Define then

also ai = xi−1 + r − xi.

Claim: If A1 holds, then t ≤ xk.

Proof of the claim. Suppose that A1 holds, let P = (u = z0, z1, . . . , z` = v) be one

such path and for every 0 ≤ i ≤ ` and let x̂i be the x-coordinate of zi. We will prove

by induction on i that we have x̂i ≤ xi. In particular, this implies t = x̂` ≤ x` ≤ xk,

and proves the claim.

Observe that

t ≥ kr(
1 + δ

(tr)2/3

) ≥ kr(1− δ

(tr)2/3

)
= kr − 2α2

kr
. (2.2)

Thus, we can use Lemma 2.2 to show that the path P is contained in the strip R ×

[−α, α]. Moreover, we must have x̂1−x̂0 ≤ r (since u = z0 and z1 are adjacent vertices).

Therefore, our choice of x1 and the fact that z1 ∈ R× [−α, α] imply that x̂1 ≤ x1. So,
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the statement holds for i = 1. Now we inductively assume that x̂i−1 ≤ xi−1. We must

have x̂i ≤ x̂i−1+r (since zi−1 and zi are adjacent vertices), and therefore x̂i ≤ xi−1+r.

Similarly as before, since zi ∈ R × [−α, α] and by the choice of xi, we conclude that

x̂i ≤ xi, as desired. This completes the proof of the claim.

Thus, it suffices to show that xk ≥ t with very small probability. We first study

the random variables ai. Define a0 = 0. By the choice of xi, for every 1 ≤ i ≤ k we

have that 0 ≤ ai ≤ r − ai−1. Recall that Ri = (xi−1 + ai−1, xi−1 + r]× [−α, α]. Since

G ∈ G̃∞u,v(r, t), the number of vertices from V inside a region of R2 is a Poisson random

variable with mean equal to the area of that region. So, for every 2 ≤ i ≤ k we have

Pr(ai ≥ β) =

Pr((xi−1 + r − β, xi−1 + r]× [−α, α] empty) = e−2αβ if 0 ≤ β ≤ r − ai−1

0 if β > r − ai−1.
(2.3)

Thus, ai is stochastically dominated by an exponentially distributed random variable

ãi of parameter 2α. We assume that ai and ãi are coupled together in the same

probability space, so that ai = min{ãi, r − ai−1} ≤ ãi.

Moreover, since the regions R1, R2, . . . , Rk that define the random variables ai

are disjoint, the joint distribution of a1, a2, . . . , ak is stochastically dominated by the

joint distribution of ã1, ã2, . . . , ãk, that is, the distribution of k i.i.d. exponentially

distributed random variables of parameter 2α.

Define

a =

k∑
i=1

ai and ã =

k∑
i=1

ãi.

Expanding recursively from the relations xi = xi−1 + r − ai and x1 = r − a1, we get

xk =

k∑
i=1

(r − ai) = kr − a.

Let us consider the event A2 defined by ãi ≤ r/2 for all 1 ≤ i ≤ k. Since we aim to

bound the probability that xk is large (or equivalently, that a is small), we cannot use

the fact that the joint distribution of the ai’s is stochastically dominated by the ones

of ãi’s. Nevertheless, note that conditional on A2, we have ai = ãi for all 1 ≤ i ≤ k;

if ai−1 ≤ r/2 then ai ≤ r/2 ≤ r − ai−1, and from (2.3), ai = ãi. In other words, for
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every β ≥ 0

Pr(a ≤ β,A2) = Pr(ã ≤ β,A2) .

Since each ãi is exponentially distributed with parameter 2α and stochastically

dominates ai, we can bound the probability that A2 does not occur:

Pr(A2) ≤
k∑
i=1

Pr (ai > r/2) ≤
k∑
i=1

Pr (ãi > r/2) = ke−αr . (2.4)

Therefore, using the bound on t given in (2.2), we have

Pr(xk ≥ t) ≤ Pr(A2) + Pr(xk ≥ t, A2) ≤ ke−αr + Pr(kr − a > t,A2)

≤ ke−αr + Pr

(
a ≤ 2α2

kr
,A2

)
= ke−αr + Pr

(
ã ≤ 2α2

kr
,A2

)
≤ ke−αr + Pr

(
ã ≤ 2α2

kr

)
. (2.5)

Thus it remains to give a good upper bound on the lower tail of ã. Notice that

E(ã) =
∑k
i=1 E(ãi) = k

2α . We use the definition of k and α, as well as Lemma 2.1 with

ε =
(
1−
√

2δ3/2 − o(1)
)

to show

Pr

(
ã ≤ 2α2

kr

)
= Pr

(
ã ≤ 4α3

k2r
· E(ã)

)
≤ Pr

(
ã ≤

(√
2δ3/2 + o(1)

)
E(ã)

)
≤ e−ε

2k/2 . (2.6)

Finally, we use (2.5), (2.6) and the definition of k, α and ε to obtain

Pr (xk ≥ t) ≤
(1 + o(1))t

r
exp

(
−
√
δ/2(tr)2/3

)
+ exp

(
−(1−

√
2δ3 − o(1))2

t

2r

)
.

Since the event A1 implies xk ≥ t, Pr(A1) ≤ Pr(xk ≥ t) and the proposition follows.

�

Proposition 2.2. Let G̃∞u,v(r, t) be a random geometric graph in R2 with two additional

distinguished vertices u = (0, 0) and v = (t, 0) such that

t = dE(u, v) ≥ max
{

12(log n)3/2/r, 21r log n
}
. (2.7)

Then we have

dG(u, v) ≤
⌊
t

r

(
1 +

1

2(rt)2/3

)⌋
,

with probability at most o(n−5/2).
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Proof. Set δ = 1/2. Since t ≥ 12(log n)3/2/r, we have√
δ/2(tr)2/3 − log ((1− o(1))t/r) >

5

2
log n ,

and since t ≥ 21r log n, (
1−
√

2δ3 − o(1)
)2 t

2r
>

5

2
log n .

By Proposition 2.1, this implies that

Pr

(
dG(u, v) ≤

⌊
t

r

(
1 +

1

2(rt)2/3

)⌋)
= o(n−5/2) .

�

The same conclusion in Proposition 2.1 must be true (for t ≤
√

2n) if we restrict

G̃∞u,v(r, t) to any arbitrary square Ŝn of area n containing u = (0, 0) and v = (t, 0) (i.e. we

consider the subgraph induced by the vertices lying inside of that square), since the

graph distance between u and v can only increase when doing so. Moreover, by rotating

and mapping an appropriate square Ŝn to Sn = [−
√
n/2,

√
n/2]2, we conclude that

statement (i) in Theorem 1.1 holds in G̃u,v(n, r) with probability 1− o(n−5/2). Hence,

in view of the de-Poissonization argument described in the beginning of Section 2,

this same property holds in G (n, r) with probability 1 − o(n−2), for a given pair of

vertices u, v. The statement follows by taking a union bound over all at most n2 pairs

of vertices.

2.2. Proof of statement (ii)

In this subsection we complete the proof of Theorem 1.1. To derive the bound on

the upper tail on the graph distance between u, v ∈ V , we first assume that u = (0, 0)

and v = (t, 0) (for some 0 < t ≤
√

2n), and analize G̃∞u,v(r, t) restricted to a suitable

rectangle. Our goal is to find a path P from u to v inside of that rectangle that gives

an appropriate upper bound on dG(u, v). Then, we will use similar ideas to those at

the end of Subsection 2.1 to derive the desired conclusion about G (n, r).

For every measurable set S ⊆ R2 containing u and v, let G̃S,u,v(r, t) denote the

random geometric graph obtained as the subgraph of G̃∞u,v(r, t) induced by the vertices

contained in S. Observe that G̃S,u,v(r, t) can also be constructed by taking as the

vertex set a Poisson point process of intensity 1 in S, adding the vertices u = (0, 0)
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and v = (t, 0), and connecting any two vertices by an edge if they are at Euclidean

distance at most r.

For every 0 < α ≤ r, we define the rectangle

S(t, α) = [0, t]× [0, α].

(The precise value of α will be specified later; it will be different to the one given in

the previous subsection.) Given α and r, we write ρ = r − α2

r . Then, for every point

z = (xz, yz) ∈ S, we define the rectangle

Sz = Sz(α) := [xz, xz + ρ]× [0, α] .

We need the following auxiliary lemma.

Lemma 2.3. Let t > 0 and 0 < α ≤ r. Then, for every pair of points z ∈ S(t, α) and

z′ ∈ Sz(α), we have dE(z, z′) ≤ r (see Figure 3).

Proof. It is enough to show that the upper-left corner z1 = (xz, α) and the bottom-

right corner z2 = (xz + ρ, 0) of Sz(α) satisfy dE(z1, z2) ≤ r. Then all the points inside

Sz(α) lie at distance at most r, and in particular dE(z, z′) ≤ r.

We have

(dE(z1, z2))2 = ρ2 + α2 = r2 − α2
(
1− (α/r)2

)
≤ r2,

and the lemma follows. �

Figure 3: The rectangle Sz

Our next task is to bound the graph distance between u and v in G̃S(t,α),u,v(r, t) by

finding a path of length at most
⌈
t
r

(
1 + δr−4/3

)⌉
from u to v, for some δ that will be

made precise in the following proposition.

Proposition 2.3. Let F > 0 and J > 3(F + 1) be constants and define g(x) =

x − log(1 + x). For every J ≤ δ ≤ Fr4/3, there exists an α such that the following
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holds: fix t ≥ 0 and consider G̃S,u,v(r, t) to be a random geometric graph with u = (0, 0),

v = (t, 0) in the rectangle S = S(t, α). Then we have

Pr

(
dG(u, v) >

⌈
t

r

(
1 + δr−4/3

)⌉)
≤ n exp

(
− (F + 1)δ1/2r4/3

2J3/2

)
+exp

(
−g
(

(δ/J)3/2
) t
r

)
.

Proof. Let us first define some parameters that will be useful in our analysis. Set

C = J−3/2 and let B be an arbitrary positive constant satisfying

B2 + 2C/B < 1/(F + 1). (2.8)

Some elementary analysis shows that such B must exist. In fact, the equation B2 +

2C/B = 1/(F + 1) has exactly two positive solutions B1 and B2 for any 0 < C =

J−3/2 < 1
(3(F+1))3/2

, and any 0 < B1 < B < B2 < 1/
√
F + 1 satisfies (2.8).

Fix some δ with J ≤ δ ≤ Fr4/3, and set

α = Bδ1/2r1/3. (2.9)

In order to use Lemma 2.3, let us first show that α ≤ r. Since δ ≤ Fr4/3 by hypothesis

of the proposition, we have

α ≤ (B
√
F )r, (2.10)

and B
√
F < 1, since B < 1/

√
F + 1. Moreover, we have

ρ = r − α2/r ≥ (1−B2F )r. (2.11)

Let us consider the integer k = d tr (1 + δr−4/3)e and let A1 be the event that

dG(u, v) ≤ k; that is, there exists a path P = (u = z0, z1, . . . , z`, v) in G̃S,u,v(r, t) from

u to v of length at most k. Such a path will only use vertices inside S = S(t, α), but

due to some technical considerations in the argument, we extend the Poisson point

process of our probability space to the semi-infinite strip S(α) = [0,∞) × [0, α]. Our

goal is to show that the probability of A1 is large.

As we did in the proof of Proposition 2.1, now we define random variables xi and

ai for every i ≥ 1. Set x0 = 0 and a0 = 0. For each i ≥ 1, consider the rectangle

Ri = Ri(α) := (xi−1 + ρ/2, xi−1 + ρ] × [0, α]. If Ri contains at least a vertex, let zi

be the vertex with largest x-coordinate inside Ri. In such a case, define xi to be the

x-coordinate of zi and ai = xi−1 + ρ− xi. Otherwise, we stop the process.
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Let τ = min{i ≥ 1 : Ri contains no points} be the stopping time of the process.

Claim: Conditional on τ ≥ k, if xk−1 + ρ ≥ t, then A1 holds.

Proof of the claim. Assume that τ ≥ k and that xk−1 + ρ ≥ t. Observe that for every

i < k, we have 0 ≤ ai ≤ ρ/2. Moreover, by construction of the process, for every

1 ≤ i < k, we have zi ∈ Ri ⊆ Szi−1 and, since α ≤ r, Lemma 2.3 implies that zi is

adjacent to zi−1. Thus, the vertices z0, z1, . . . , zk−1 form a path. In particular,

x1 ≥ ρ/2. (2.12)

Since xk−1 + ρ ≥ t, we know that there exists a value ` ≤ k− 1 such that x`−1 + ρ ≥ t

and also x`−1 ≤ t, and thus, by Lemma 2.3, z` and v are connected by an edge. The

path P = (u = z0, z1 . . . , z`, v) has length ` + 1 ≤ k, connects u and v and is fully

contained in S. Therefore, A1 is satisfied, which completes the proof of the claim.

It suffices to show that we have with high probability τ ≥ k, and that conditional

on it, with high probability xk−1 + ρ ≥ t.

For every 0 ≤ i < τ , let A
(i)
2 be the event that aj ≤ ρ/2 for every 1 ≤ j ≤ i

and let A2 = A
(k−1)
2 be the event that τ ≥ k. Conditional on A2, we have that

the regions R1, . . . , Rk−1 are disjoint. Hence, we deduce that conditional on A2, the

joint distribution of a1, . . . , ak−1 is the same as the joint distribution of ã1, . . . , ãk−1,

with ã1, . . . , ãk−1 being k − 1 independent exponentially distributed random variables

with parameter α. In particular, conditional only on A
(i−1)
2 , we also have that ai is

stochastically dominated by ãi, and hence,

Pr(A2) =

k−1∑
i=1

Pr
(
ai ≥ ρ/2 | A(i−1)

2

)
≤
k−1∑
i=1

Pr(ãi ≥ ρ/2) .

Since αρ/2 ≥ (1−B2F )αr/2 = (1−B2F )Bδ1/2r4/3/2, we have

Pr(ãi ≥ ρ/2) = e−αρ/2 ≤ e−(1−B
2F )Bδ1/2r4/3/2 .

and that

Pr(τ < k) = Pr(A2) ≤ ne−(1−B
2F )Bδ1/2r4/3/2 . (2.13)

Also, if we let a =
∑k−1
i=1 ai and ã =

∑k−1
i=1 ãi, conditional on A2 (or in other words, on

τ ≥ k), by the same argument, for every β ≥ 0, we have

Pr(a ≥ β, A2) = Pr(ã ≥ β, A2) . (2.14)
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Observe that now E(ã) = k−1
α . Let A3 be the event that ã ≤ (1 +Cδ3/2)k−1α . We first

show that A3 implies the event {kρ− ã > t}. Conditional on A3, using the definition

of α, the fact that δ−3/2 ≤ C and that δ ≤ Fr4/3, we have

kρ− ã > kρ−
(
1 + Cδ3/2

)
(k − 1)

α
≥ kr

(
1− α2

r2
− (1 + Cδ3/2)

αr

)
≥ t(1 + δr−4/3)

(
1− δr−4/3

(
B2 +

(δ−3/2 + C)

B

))
≥ t(1 + δr−4/3)

(
1− δr−4/3

(
B2 +

2C

B

))
= t

[
1 + δr−4/3

(
1−

(
δr−4/3 + 1

)(
B2 +

2C

B

))]

≥ t

[
1 + δr−4/3

(
1− (F + 1)

(
B2 +

2C

B

))]
> t. (2.15)

Now, we can use (2.14) and the upper-tail bound in Lemma 2.1 to prove

Pr(A3) = Pr

(
ã ≥ (1 + Cδ3/2)

k − 1

α

)
≤ e−g((δ/J)

3/2)(k−1) ≤ e−g((δ/J)
3/2)(dt/re−1) .

(2.16)

By expanding the definition of xk−1, we can write xk−1 = (k− 1)ρ− a. Thus, using

(2.13), (2.14), (2.15) and (2.16) we obtain

Pr({τ < k} ∪ {xk−1 + ρ ≤ t}) = Pr(A2) + Pr(xk−1 + ρ ≤ t, A2)

≤ ne−(1−B
2F )Bδ1/2r4/3/2 + Pr(kρ− a ≤ t, A2)

≤ ne−(1−B
2F )Bδ1/2r4/3/2 + Pr(kρ− ã ≤ t)

≤ ne−(1−B
2F )Bδ1/2r4/3/2 + Pr(A3) + Pr(kρ− ã ≤ t, A3)

≤ ne−(1−B
2F )Bδ1/2r4/3/2 + e−g((δ/J)

3/2)(dt/re−1) .

(2.17)

Moreover, by the properties of B and the definition of C, we have (1 − B2F )B >

(1−B2(F + 1))B > 2C(F + 1) = 2(F + 1)J−3/2 . Thus,

Pr(xk−1 + ρ ≤ t) ≤ ne−
(F+1)δ1/2r4/3

J3/2 + e−g((δ/J)
3/2)(dt/re−1),

concluding the proof of the proposition. �

Remark 2.1. Observe the trade-off between δ and the success probability in the proof

of Proposition 2.3: for a given value of δ, we set α = Θ(
√
δr1/3). That is, for a given
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radius r, the smaller δ, the smaller α. Proposition 2.3 computes the probability that

a path using vertices only within a strip of width α can be found. Clearly, the smaller

δ, the straighter a path has to be, and the smaller the rectangle in which we have to

find a path has to be, therefore making also α smaller. On the other hand, for smaller

α, the probability of indeed finding a path in such a small strip also gets smaller.

Proposition 2.4. Given t > 0 and the vertices u = (0, 0) and v = (t, 0), let γ = γ(t)

be defined as in the statement of Theorem 1.1. Let G̃S,u,v(r, t) be a random geometric

graph in the rectangle S = S(t, α), with additional vertices u and v. Suppose that

r ≥ 224
√

log n. Then, we have

dG(u, v) >

⌈
t

r

(
1 + γr−4/3

)⌉
,

with probability at most o(n−5/2).

Proof. First, observe that, if t ≤ r, then dG(u, v) = 1 with probability 1, and the

statement of the proposition holds trivially. Thus, we assume henceforth that t > r.

Set B = 0.01/(2.02
√

2), C = 10−4, F = 1, D = 4 · 106, E = 1358 and J = 108/3. Set

γ′ = max

{
E

(
log n

dt/re − 1

)2/3

, D
log2 n

r8/3
, 32/3J

}
.

Note that γ′ ≤ γ for γ as given in Theorem 1.1: indeed, the second and the third term

are equal, and for the first term, for t > r, we have that (3/(1 + t/r)) > (1/(dt/re − 1))

holds. Therefore, it suffices to apply Proposition 2.3 with δ = γ′. It is straightforward

to check that the restrictions (2.8) and J > 3(F + 1), required in Proposition 2.3,

hold. We also need to show that J ≤ γ′ ≤ Fr4/3. Notice that D log2 n
r8/3

≤ Fr4/3, since

r ≥ 224
√

log n ≥ D1/4
√

log n; also E
(

logn
dt/re−1

)2/3
≤ Fr4/3, since dt/re − 1 ≥ 1, and

since r2 ≥ E3/2 log n, which follows from our assumption of r ≥ 224
√

log n; and finally

32/3J ≤ Fr4/3 since r = Ω(
√

log n). Moreover, γ′ ≥ 32/3J ≥ J .

Note that this choice of constants combined with (2.10) and (2.11) implies

α ≤ 0.01

2.02
√

2
r ≤ r/3 and ρ ≥ 8r/9 ≥ 8α/3. (2.18)

We will now apply (2.17) in the proof of Proposition 2.3 with this given δ, in order to
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show that Pr(dG(u, v) > k) = o(n−5/2). On the one hand, δ ≥ D log2 n
r8/3

implies

(1−B2F )Bδ1/2r4/3

2
− log n ≥ (1−B2F )BD1/2 log n

2
− log n

>
7.0009

2
log n− log n =

5.0009

2
log n .

On the other hand, δ ≥ 32/3J and δ ≥ E
(

logn
dt/re−1

)2/3
imply

g
(

(δ/J)3/2
)

(dt/re − 1) >
(δ/J)3/2

2
(dt/re − 1) ≥ 1

2
CE3/2 log n >

5.004

2
log n,

where we have used that g(x) ≥ x/2 if x ≥ 3, and that C = J−3/2.

Therefore, Pr(dG(u, v) > k) ≤ n−5.0009/2 + n−5.004/2 = o(n−5/2). �

Corollary 2.1. Statement (ii) in Theorem 1.1 is true.

Proof. We will use an argument similar to that at the end of Subsection 2.1 to

relate the models G̃S(t,α),u,v(r, t) and G̃u,v(n, r). However, such endeavour entails extra

difficulties. Given two vertices u, v ∈ Sn = [−
√
n/2,

√
n/2]2 at Euclidean distance

t > 0, there are exactly two isometries that map them to (0, 0) and (t, 0), denoted by

π+ and π−. Unfortunately, the preimage of the rectangle S(t, α) under such isometries

may not be entirely contained in the square Sn. In order to overcome this obstacle, we

just need to show that the internal vertices of the path from (0, 0) to (t, 0) that we built

in the proof of Proposition 2.3 are contained in a smaller rectangle whose preimage

under either π+ or π− is contained in Sn. This will be enough for us to conclude the

existence (with sufficiently high probability) of a path in G̃u,v(n, r) between u and v of

the desired length.

Recall the definition of α given in (2.9). Observe that from (2.12) together with (2.18),

x1 ≥ ρ/2 > 4α/3 with probability at least 1−o(n−5/2). In particular, this event implies

that z1 is outside of the square [0, 1.01α]× [0, α]. If z` (the last internal vertex of the

path P found) is outside [t− 1.01α, t]× [0, α], we obtain a path connecting u and v of

length `+1 ≤ k with all its internal vertices in R := [1.01α, t−1.01α]×[0, α]. Otherwise,

suppose that z` lies in [t− 1.01α, t]× [0, α]. Then, also with probability 1− o(n−5/2),

we can find some point ẑ` in [t−1.01α−r/2, t−1.01α)× [0, α]: indeed, since ρ ≤ r, the

region in which we want ẑ` is bigger than the regions Si in the proof of Proposition 2.3

and Proposition 2.4. We now can use Lemma 2.3 to show that z` can be replace by ẑ`
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in P . Observe that ẑ` is connected to v, since 1.01α+r/2 ≤ ρ, and also ẑ` is connected

to z`−1, since its x-coordinate x̂` satisfies |x̂` − x`−1| ≤ max{ρ, r/2− ρ/2} ≤ ρ. Thus,

we can replace z` with ẑ`, and obtain a new path connecting u and v of length `+1 ≤ k

with all its internal vertices in R. We will show that either π+(R) or π−(R) is always

contained in Sn. We first introduce some definitions.

Consider two points u = (xu, yu) and v = (xv, yv) in Sn. By symmetry we may

assume that xu < xv and yu ≤ yv. Let β be the angle of the vector ~uv with respect to

the horizontal axis. Again by symmetry, we may consider β ∈ [0, π/4].

We consider now two rectangles of dimensions α × t placed on each side of the

segment uv. Let R+ be the rectangle to the left of ~uv (that is, R+ = π+(R)), and let

R− be the rectangle to the right of ~uv (also, R− = π−(R)). We will show that at least

one of these rectangles contains a copy of R fully contained in Sn. This choice will

determine which of the isometries, π+ or π−, map R inside Sn.

Notice that the intersection of R+ and R− with each of the halfplanes x ≤ xu,

x ≥ xv, y ≤ yu and y ≥ yv gives 4 triangles. We call them T+
u , T−v , T−u and T+

v

respectively. All these triangles are right-angled, and denote by t+u , t−v , t−u and t+v the

side of the corresponding triangle that it is parallel to the segment uv. Notice that

|t+u | = |t−v | and |t−u | = |t+v |. Call a triangle T ∗w, with w ∈ {u, v} and ∗ ∈ {+,−}, safe if

|t∗w| ≤ 1.01α. Note that if T+
u and T+

v are safe or fully contained in the square, then

R+ contains the desired rectangle R, and analogously for R−.

Since we assumed that β ≤ π/4, we have |t+u | = |t−v | = α| tanβ| ≤ 1.01α. Thus, T+
u

and T−v are safe. If yu = yv, that is β = 0, it is clear that either R+ or R− contain the

desired copy of R. Thus, we may assume that β > 0.

We can also assume that both u and v are on the boundary of Sn, as otherwise we

extend the line segment uv to the boundary of the square, and the original rectangles

are contained in the new ones.

Recall that T+
u and T−v are safe. If yv <

√
n/2−α, then T+

v is completely contained

in the square, and hence R+ satisfies the conditions. Similarly, if yu > −
√
n/2 + α,

R− satisfies the conditions. Thus, assume that yv ≥
√
n/2− α and yu ≤ −

√
n/2 + α.

We will show that R− contains the desired copy of R: as before, T−v is safe, so it

remains to consider T−u . We have |t−u | = α tan (π2 − β). For 0 < β ≤ π/4, tan (π2 − β)

is decreasing in β, and it therefore suffices to show that T−u is safe for the smallest
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Figure 4: The black area represents the copy of R contained in Sn

possible value of β. Notice that the minimal angle β under our assumptions on yu

and yv is obtained for u = (−
√
n/2,−

√
n/2 +α) and v = (

√
n/2,

√
n/2−α), and thus

β ≥ arctan
(√

n−2α√
n

)
, or equivalently tan (π2 − β) ≤

√
n√

n−2α . In this case,

|t−u | ≤ α ·
√
n√

n− 2α
= α

(
1 +

2α√
n− 2α

)
≤ 1.01α,

where the last inequality follows from the fact that α ≤ 0.01
2.02
√
2
r ≤ 0.01

2.02

√
n since we

assumed r ≤
√

2n (see also (2.18)), and therefore 2α√
n−2α ≤ 0.01.

Again, by de-Poissonizing G̃u,v(n, r), we can use Proposition 2.4 to show that for

given u and v in G ∈ G (n, r), statement (ii) in Theorem 1.1 holds with probability at

least 1−o(n−2). By taking a union bound over all at most n2 possible pairs of vertices,

statement (ii) in Theorem 1.1 follows. �
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