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Abstract

In this work we show that, for any fixed d, random d-regular graphs asymptotically
almost surely can be coloured with k colours, where k is the smallest integer satisfying
d < 2(k−1) log(k−1). From previous lower bounds due to Molloy and Reed, this estab-
lishes the chromatic number to be asymptotically almost surely k− 1 or k. If moreover
d > (2k−3) log(k−1), then the value k−1 is discarded and thus the chromatic number
is exactly determined. Hence we improve a recently announced result by Achlioptas and
Moore in which the chromatic number was allowed to take the value k + 1. Our proof
applies the small subgraph conditioning method to the number of equitable k-colourings,
where a colouring is equitable if the number of vertices of each colour is equal.

1 Introduction

The chromatic number χ of random graphs is a topic that has attracted considerable interest
since the breakthrough achieved by Shamir and Spencer [19], which marked one of the first
applications of martingales in combinatorics. For the classical Erdős–Rényi model G(n, p), a
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celebrated result by Bollobás [7] later extended by  Luczak [15] showed that if pn → ∞ then
asymptotically almost surely (a.a.s.)

χ(G(n, p)) ∼ n log(1/(1− p))
2 log(np)

.

Here and in similar statements, an event occurs a.a.s. if its probability tends to 1 as n tends
to infinity. For p = c/n, Achlioptas and Naor [3] proved that the chromatic number of G(n, p)
is a.a.s. k or k + 1 where k is the smallest positive integer with 2k log k > c. Moreover, they
discarded the case k for roughly half of the values of c. (Here and throughout this paper
all logarithms are natural.) In the same direction, Coja-Oghlan, Panagiotou and Steger [8]
showed that a.a.s. χ(G(n, p)) ∈ {k, k+1, k+2} for p < n−3/4−ε where k is the smallest positive
integer satisfying 2k log k > p(n − 1). Meanwhile, some other results gave concentration of
the chromatic number without determining the values so precisely:  Luczak [16] proved that
χ(G(n, p)) is a.a.s. two point concentrated if p < n−5/6−ε, and later Alon and Krivelevich [4]
extended this to p < n−1/2−ε.

More recently, results have been published about the chromatic number for the model
Gn,d of random d-regular graphs, which is the probability space on d-regular graphs with n
vertices having uniform distribution. For basic results and notation on random regular graphs,
see [22]. Hereinafter, dn is always assumed to be even for feasibility. For fixed d, Molloy and
Reed [17] showed that if q(1− 1/q)d/2 < 1 then χ(Gn,d) > q a.a.s. Then, for d < n1/3−ε, Frieze
and  Luczak [12] established that

χ(Gn,d) =
d

2 log d
+O

(
d log log d

log2 d

)
,

and later Cooper, Frieze, Reed and Riordan [9] extended the same asymptotic formula to
apply to d ≤ n1−ε. Similarly, the range n6/7+ε ≤ d ≤ 0.9n was covered by Krivelevich,
Sudakov, Vu and Wormald [14], who showed that χ(Gn,d) ∼ n

2 logb d
a.a.s. where b = n/(n− d).

Achlioptas and Moore [2] recently announced a significant new result for constant d. They
stated that if k is the smallest integer satisfying d < 2(k − 1) log(k − 1) then a.a.s. χ(Gn,d) is
k − 1, k, or k + 1. If, in addition, d > (2k − 3) log(k − 1), then a.a.s. χ(Gn,d) is k or k + 1.
They also established two point concentration of χ(Gn,d) for d = d(n) bounded above by some
small power of n, which was extended to d = o(n1/5) by Ben-Shimon and Krivelevich [5].

In this paper we restrict the set of possible values for the chromatic number given by
Achlioptas and Moore, and show that χ(Gn,d) a.a.s. cannot be k + 1. Therefore this reduces
the range of possibilities for χ(Gn,d) to only a.a.s. k−1 and k, in the first case, and establishes
that χ(Gn,d) = k a.a.s. in the second case. For example, it establishes the previously unknown
result that a.a.s. χ(Gn,10) = 5 and χ(106) = 46523. It also provides an alternate proof of
the result of Shi and Wormald [21] that a.a.s. χ(Gn,6) = 4. Curiously, our result is not
strong enough to prove that a.a.s. χ(Gn,4) = 3, which was established by Shi and Wormald
[20]. We essentially need to show that Gn,d is a.a.s. k-colourable, since the above-mentioned
lower bound of Molloy and Reed implies that Gn,d is a.a.s. not (k − 2)-colourable, and for
the second case, not (k − 1)-colourable. Our basic approach for the upper bound is similar
to that of Achlioptas and Moore, in that we analyse the second moment of the number Y
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of equitable k-colourings of random regular graphs. In fact, Achlioptas and Moore found
that the second central moment E(Y − EY )2 is (essentially, in a more or less equivalent
model of random graphs) asymptotically a non-zero constant times the square of the first.
Consequently, Chebyshev’s inequality fails to show the result which we claim above. In cases
like this, this failure of the second moment inequality to establish Y > 0 a.a.s. can, at least
for random structures similar to Gn,d, be overcome by using the small subgraph conditioning
method of Robinson and the third author. (See [13, Chapter 9] and [22] for a full exposition
of the method.) Using this, we show that Gn,d is a.a.s. k-colourable.

Theorem 1 Given any integer d ≥ 3, let k be the smallest integer such that d < 2(k −
1) log(k − 1). Then the chromatic number of Gn,d is a.a.s. k − 1 or k. If furthermore d >
(2k − 3) log(k − 1), then the chromatic number of Gn,d is a.a.s. k.

In part simultaneously with this work, a similar approach was used by the authors together
with Dı́az, Kaporis and Kirousis [11] to show that, provided a certain maximum hypothesis
about a specific function is true, a random 5-regular graph is a.a.s. 3-colourable. However,
we were unable to verify the maximum hypothesis.

Actually, almost all previous applications of the small subgraph conditioning method were
for a random variable that counted large subgraphs in the random graph. To apply the method
in the present setting we need to calculate the first and second moments of the number of
equitable k-colourings (n is then required to be divisible by k), as well as joint moments of the
number of such colourings and the number of short cycles. These computations are done in
the well-known pairing or configuration model Pn,d which was first introduced by Bollobás [6].
A pairing in Pn,d is a perfect matching on a set of dn points which are grouped into n cells
of d points each. A random pairing naturally corresponds in an obvious way to a random
d-regular multigraph (possibly containing loops or multiple edges), in which each cell becomes
a vertex. Colourings of the multigraph then correspond to assignments of colours to the cells
of the model. The reader should refer to [22] for aspects of the pairing model not explained
here.

Proposition 2 Fix integers d, k ≥ 3. Let Y be the number of equitable k-colourings of a
random d-regular multigraph Pn,d (where n is restricted to the set of multiples of k).

(a) For m ≥ 1, let Xm be the number of m-cycles in Pn,d. Then

EY ∼ kk/2
(

k − 1

2π(k − 2)

)(k−1)/2

n−(k−1)/2kn
(

1− 1

k

)dn/2
and

E(Y [X1]p1 · · · [Xj]pj) ∼
j∏

m=1

(λm (1 + δm))pm E(Y ) (1.1)

where

λm =
(d− 1)m

2m
and δm =

(−1)m

(k − 1)m−1
.
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(b) If furthermore d < 2(k − 1) log(k − 1) then

E(Y 2) ∼ kk(k − 1)k(k−1)

(k2 − 2k − d+ 2)(k−1)2/2(2π(k − 2))k−1
n−(k−1)k2n

(
1− 1

k

)dn
.

We next compute ∑
m≥1

λmδ
2
m = (k − 1)2 log

(
k − 1√

k2 − 2k − d+ 2

)
, (1.2)

and verify that for n divisible by k

E(Y 2)

(EY )2
∼
(

k − 1√
k2 − 2k − d+ 2

)(k−1)2

= exp

(∑
m≥1

λmδ
2
m

)
, (1.3)

which is the last ingredient required for the application of the small subgraph conditioning
method.
Proof of Theorem 1 (for n divisible by k). Assume throughout the proof that k divides
n, and observe that all the conditions of Theorem 4.1 in [22] are verified by Proposition 2,
(1.2) and (1.3). Thus we may apply the small subgraph conditioning method to conclude
that P(Y > 0 | E) → 1, where E =

∧
δk=−1{Xk = 0} = {X1 = 0} is the event of having

no loops. Because P (X2 = 0) is bounded away from 0 for large n (see e.g. [22]), it follows
that Y > 0 a.a.s. for the simple graphs in Gn,d, thus proving the required upper bound on the
chromatic number. Now observe that from our choice of k we have d ≥ 2(k − 2) log(k − 2) >
(2k − 5) log(k − 2). Then the required lower bounds follow immediately from the fact that
if d > (2q − 1) log q then χ(Gn,d) > q (applied to q = k − 2 or q = k − 1 for each case in
the statement). This is just a slightly weaker formulation of the result given by Molloy and
Reed [17]. (Their proof is reported in [21], Theorem 1.3.)

The following two sections supply the proof of Proposition 2. Finally, in Section 4, we
conclude the proof of Theorem 1 by extending the argument to general n.

2 Joint moments: proof of Proposition 2(a)

Let Y be the number of equitable k-colourings of a random d-regular multigraph Pn,d. For
m ≥ 1, let Xm be the number of m-cycles in Pn,d. We estimate the expected value of Y
by enumerating all equitable k-colourings of all multigraphs in Pn,d. There are

(
n

n/k,n/k,...,n/k

)
ways to choose the k colour classes. These choices are all equivalent so fix one. Suppose
there are bij = bji edges between colour class i and colour class j (for 1 ≤ i, j ≤ k and
i 6= j). The colours of the neighbours of all of the points of colour class i can be then
chosen in (dn/k)!/

∏
1≤j≤k
j 6=i

bij! ways. After this determination is made, edges are constructed

by putting a perfect matching between the corresponding points in each pair of classes, in
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one of
∏

1≤i<j≤k bij! ways. Thus we have

|Pn,d|E(Y ) =

(
n

n/k, n/k, . . . , n/k

)∑
{bij}

(
k∏
i=1

(dn/k)!∏
1≤j≤k
j 6=i

bij!

) ∏
1≤i<j≤k

bij!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

∑
{bij}

1∏
1≤i<j≤k bij!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

[ k∏
l=1

x
dn/k
l

] ∏
1≤i<j≤k

∑
l≥0

(xixj)
l

l!

=

(
n

n/k, n/k, . . . , n/k

)
(dn/k)!k

[ k∏
l=1

x
dn/k
l

]
exp

( ∑
1≤i<j≤k

xixj

)
,

where square brackets denote the extraction of a coefficient from a generating function. A
particular case of the following result gives us an accurate estimate of that coefficient. The
proof is based on the saddlepoint method and is included later in this section.

Lemma 3 Let k, d, a1, a2, . . . , ak be fixed integers with k ≥ 3, d positive, and s =
∑k

j=1 aj

even. Let Ca1,a2,...,ak denote the coefficient of x
dn/k+a1
1 x

dn/k+a2
2 · · ·xdn/k+ak

k in the generating
function exp(

∑
1≤j<l≤k xjxl). Then as n→∞ we have Ca1,a2,...,ak ∼ C(s), where

C(s) = (2π)−k
(
k(k − 1)

dn

)(dn+s)/2

2edn/2(2π)k/2
(
k(k − 1)

dn

)k/2
(2k − 2)−1/2(k − 2)−(k−1)/2.

Hence we deduce

|Pn,d|E(Y ) ∼
(

n

n/k, n/k, . . . , n/k

)
(dn/k)!kC(0). (2.1)

Combining this with the well-known formula for the number of pairs on dn points,

|Pn,d| = (dn− 1)!! =
(dn)!

(dn/2)!2dn/2
∼
√

2

(
dn

e

)dn/2
, (2.2)

and after some basic manipulations using Stirling’s formula we obtain the estimate for E(Y )
stated in the proposition.

Next we estimate the expected value of Y Xm where Y is the number of equitable k-
colourings and Xm the number of length-m cycles. It is more convenient to count rooted
oriented cycles, which introduces a factor of 2m into our calculations. It will be helpful to
have the following definitions. For a rooted oriented cycle in a coloured graph, define its colour
type to be the sequence T of colours on its vertices. For j = 1, 2, . . . , k, let αj(T ) denote the
number of vertices in T which have colour j. Note that the sum

∑
j αj(T ) is m.

To calculate the expected value of Y Xm, we will count, for each equitable k-colouring and
each rooted oriented m-cycle, the number of pairings which contain this cycle and respect
this colouring.
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As before, there are
(

n
n/k,n/k,...,n/k

)
ways to choose the equitable k-colouring. All are equiv-

alent, so fix one. To enumerate the cycles and pairings which respect this colouring, we will
sum over all colour types T . Once a colour type has been chosen, each vertex of the cycle
can be placed in the pairing model by choosing a vertex of the correct colour and an ordered
pair of points in that vertex to be used by the cycle. Hence, in total, there are asymptotically
(d(d− 1)n/k)m ways to place the rooted oriented cycle in the pairing model. We now have

E(Y Xm) ∼ 1

2m

(
n

n/k, n/k, . . . , n/k

)(
d(d− 1)n

k

)m
1

|Pn,d|
∑
T

f(T ),

where f(T ) is the number of pairings which respect a fixed equitable k-colouring and fixed
rooted oriented cycle of colour type T . To count these pairings, suppose there are bij = bji
edges between colour class i and colour class j (for 1 ≤ i, j ≤ k and i 6= j), excluding the edges
of the prescribed cycle. The colours of the neighbours of all of the unmatched points of colour
class i can be then chosen in (dn/k − 2αi(T ))!/

∏
1≤j≤k
i6=j

bij! ways. After this determination is

made, edges are constructed by putting a perfect matching between the corresponding points
in each pair of classes, in one of

∏
1≤i<j≤k bij! ways. Thus we have

f(T ) =
∑
{bij}

(
k∏
i=1

(dn/k − 2αi(T ))!∏
1≤j≤k
i6=j

bij!

) ∏
1≤i<j≤k

bij!

=
∑
{bij}

∏
i(dn/k − 2αi(T ))!∏

i<j bij!

∼ (dn/k)!k

(dn/k)2m

∑
{bij}

1∏
1≤i<j≤k bij!

∼ (dn/k)!k

(dn/k)2m

[ k∏
l=1

x
dn/k−2αl(T )
l

] ∏
1≤i<j≤k

∑
l≥0

(xixj)
l

l!

∼ (dn/k)!k

(dn/k)2m

[ k∏
l=1

x
dn/k−2αl(T )
l

]
exp

( ∑
1≤i<j≤k

xixj

)
.

By Lemma 3 the asymptotic value of the coefficient in the last expression is C(−2m), making
the entire expression independent of T . Moreover, the number tm of possible colour types for
a rooted oriented cycle of length m satisfies the obvious recurrence tm + tm−1 = k(k − 1)m−1

with t1 = 0. So we have tm = (k − 1)m + (k − 1)(−1)m and therefore

E(Y Xm) ∼ 1

2m

(
n

n/k, n/k, . . . , n/k

)(
d(d− 1)n

k

)m
1

|Pn,d|
(dn/k)!k

(dn/k)2m

×((k − 1)m + (k − 1)(−1)m)C(−2m).
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Comparing this expression with (2.1) we see that

E(Y Xm)

E(Y )
∼ 1

2m

(
d(d− 1)n

k

)m
((k − 1)m + (k − 1)(−1)m)

1

(dn/k)2m
C(−2m)/C(0)

∼ 1

2m

(
d(d− 1)n

k

)m
((k − 1)m + (k − 1)(−1)m)

1

(dn/k)2m

(
k(k − 1)

dn

)−m
∼ (d− 1)m

2m

(
1 +

(−1)m

(k − 1)m−1

)
.

∼ λm(1 + δm).

The above argument is easily extended to work for higher moments, by counting the pairings
that contain a given equitable k-colouring and set of oriented cycles of the appropriate lengths.
The contribution from cases where the cycles intersect turns out to be negligible, for the
following reasons. Suppose that the cycles form a subgraph H with ν vertices and µ edges,
and the total length of cycles is ν0. Then in the case of disjoint cycles, ν = µ = ν0. A
factor of Θ(nν0−ν) is lost if there is a reduction in the number of vertices of H, compared
with the disjoint case, because of the reduced number of ways of placing the cycles on the
coloured vertices. Similarly, a factor Θ(nν0−µ) is gained in the function f for the reduction in
the number of edges of H, because of the corresponding increase in the number of points to
be paired up at the end. Thus, the contribution from such an arrangement of cycles to the
quantity being estimated is of the order of nν−µ times that of the contribution from disjoint
cycles. In all non-disjoint cases, H has more edges than vertices, since its minimum degree
is at least 2, and it has at least one vertex of degree at least 3. There are only finitely many
isomorphism types of H to consider, so the contribution from the case of disjoint cycles is of
the order of n times the rest. The significant terms in this case decompose into a product of
the factors corresponding to the individual cycles, and we obtain

E(Y [X1]p1 · · · [Xj]pj)/E(Y ) ∼
j∏

m=1

(λm (1 + δm))pm

as claimed.

It only remains to prove Lemma 3. Before doing so, we need the following result, which
will be used several times in the paper.

Lemma 4 Let k be a positive integer. Define the function f : Rk → C by

f(θ) = ia(n, θ)− c1nθ
>Bθ

where i is the imaginary unit, a is a real function, B is a fixed k-by-k positive definite real
matrix, and c1 > 0 is a real constant. Let δ = c2n

−1/2 log n for some real constant c2 > 0.
Then, as n→∞, ∫

[−δ,δ]k
ef(θ)dθ =

∫
[−∞,∞]k

ef(θ)dθ +O(e−c(logn)2)

for some constant c > 0.
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Proof. Note that in order to bound the integral of ef(θ) over [−∞,∞]k \ [−δ, δ]k we only need
to consider the real part of f(θ). Moreover, since B is positive definite we have θ>Bθ ≥ λ|θ|2
where λ > 0 is the smallest eigenvalue of B. The proof is elementary in view of these two
observations.

Proof of Lemma 3. We will use the saddlepoint method. First we use Cauchy’s formula
to express Ca1,a2,...,ak as an integral over the product of circles zj = reiθj , −π ≤ θj ≤ π for

j = 1, 2, . . . , k, where r =
√
dn/k(k − 1).

Ca1,a2,...,ak =
1

(2πi)k

∫
|z1|=r

∫
|z2|=r

· · ·
∫
|zk|=r

exp
(∑

j<l zjzl

)
z
dn/k+a1+1
1 z

dn/k+a2+1
2 · · · zdn/k+ak+1

k

dz1dz2 · · · dzk

=
1

(2π)k

∫ π

−π

∫ π

−π
· · ·
∫ π

−π

exp
(∑

j<l(re
iθj)(reiθl)

)
(reiθ1)dn/k+a1(reiθ2)dn/k+a2 · · · (reiθk)dn/k+ak

dθ1dθ2 · · · dθk

=
1

(2π)krdn+s

∫ π

−π

∫ π

−π
· · ·
∫ π

−π

exp(r2
∑

j<l e
i(θj+θl))

exp(i
∑

j(dn/k + aj)θj)
dθ1 · · · dθk.

Let g(θ) denote the integrand in the last expression above. Letting 1 denote the vector of
1’s, consider the image of g(θ) under the transformation θ 7→ θ + π1. It is clear that the
numerator is fixed by this transformation. The denominator becomes

exp(i
∑
j

(dn/k + aj)(θj + π)) = exp(i
∑
j

(dn/k + aj)θj) exp(i(dn+ s)π)

= exp(i
∑
j

(dn/k + aj)θj)

since dn (the sum of the vertex degrees) and s are both even. So g(θ) is fixed by this
transformation. Letting δ = log n/

√
n, this means that the integrals of g(θ) over regions

{θ : |θj| ≤ δ, j = 1, 2, . . . , k} and {θ : π − δ ≤ |θj| ≤ π, j = 1, 2, . . . , k} are equal. We will
prove that the integral I of g(θ) over each of these regions is asymptotically equal to

I = edn/2(2π)k/2
(
k(k − 1)

dn

)k/2
(2k − 2)−1/2(k − 2)−(k−1)/2

= K exp

(
dn/2− k

2
log n

)
,

where K is a constant, and we will show that the integral over the remaining regions is
asymptotically smaller. From these results the proposition follows.

To prove that the integral over vectors θ in the remaining regions is asymptotically smaller,
there are two cases: either |θj∗| ≤ δ and π − δ ≤ |θl∗| ≤ π for some distinct j∗ and l∗, or
δ ≤ |θj∗| ≤ π − δ for some j∗.
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In the first case, suppose that |θj∗| ≤ δ and π − δ ≤ |θl∗| ≤ π for some distinct j∗ and l∗.
Then π − 2δ ≤ |θj∗ + θl∗| ≤ π + 2δ and hence cos(θj∗ + θl∗) ≤ 0. So

|g(θ)| = exp

(
r2
∑
j<l

cos(θj + θl)

)

≤ exp

(
r2(

(
k

2

)
− 1) + r2 cos(θj∗ + θl∗)

)
≤ exp

(
r2(

(
k

2

)
− 1)

)
= exp

(
dn

2
− dn

k(k − 1)

)
= o(I).

In the second case we suppose that δ ≤ |θj∗ | ≤ π − δ for some j∗. If there is a value of l∗

for which |θj∗ + θl∗| > δ/2 then δ/2 < |θj∗ + θl∗| < 2π − δ/2. This means

cos(θj∗ + θl∗) < cos(δ/2) = 1− δ2

8
+O(δ4)

and hence

|g(θ)| = exp

(
r2
∑
j<l

cos(θj + θl)

)

≤ exp

(
r2(

(
k

2

)
− 1) + r2 cos(θj∗ + θl∗)

)
= exp

(
r2(

(
k

2

)
− 1) + r2(1− δ2

8
+O(δ4))

)
= exp

(
r2

(
k

2

)
− r2 δ

2

8
+O(r2δ4)

)
= exp

(
dn

2
− d(log n)2

8k(k − 1)
+ o(1)

)
= o(I).

Otherwise, there is no such l∗. That is, for all l∗ not equal to j∗ we have |θl∗−(−θj∗)| ≤ δ/2.
This implies that all θl with l 6= j∗ have the same sign and satisfy δ/2 ≤ |θl| ≤ π− δ/2. Since
k ≥ 3 we can choose two distinct such l, say l∗ and l∗∗, and deduce

δ ≤ |θl∗ + θl∗∗| ≤ 2π − δ.

Using the same argument as above, it follows that |g(θ)| = o(I).
This completes the proof that the integral of g(θ) over these regions is asymptotically

negligible, as claimed.
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It remains to show the integral of g(θ) over the region {θ : |θj| ≤ δ, j = 1, 2, . . . , k} is
asymptotically equal to I. We begin by expanding

log g(θ) = r2

(
k

2

)
+ i(r2(k − 1)− dn/k +O(1))

k∑
j=1

θj −
1

2
r2
∑
j<l

(θj + θl)
2 +O(r2

k∑
j=1

|θj|3)

= r2

(
k

2

)
− 1

2
r2
∑
j<l

(θj + θl)
2 + o(1)

since r2 = dn/(k(k − 1)) and |θj| ≤ δ = log n/
√
n for all j. The quadratic order term can

be written as −1
2
r2
∑

j<l(θj + θl)
2 = −1

2
θ>Aθ. Here, θ> denotes the transpose of the column

vector θ and A is the matrix A = r2(11>+ (k− 2)Ik), where Ik is the k-by-k identity matrix.
By Lemma 4 and since A is positive definite, we have for some constant c > 0∫ δ

−δ

∫ δ

−δ
· · ·
∫ δ

−δ
exp

(
−1

2
r2
∑
j<l

(θj + θl)
2

)
dθ1dθ2 · · · dθk

=

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

(
−1

2
θ>Aθ

)
dθ1dθ2 · · · dθk +O(e−c log2 n).

It is well-known (see Equation 4.6.3 in [10]) that such integrals have the value (2π)k/2(detA)−1/2,
giving us ∫ ∞

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

exp

(
−1

2
r2
∑
j<l

(θj + θl)
2

)
dθ1dθ2 · · · dθk

= (2π)k/2
(
r2k(2k − 2)(k − 2)k−1

)−1/2
.

We conclude∫ δ

−δ

∫ δ

−δ
· · ·
∫ δ

−δ
g(θ)dθ1dθ2 · · · dθk ∼ er

2(k
2)(2π)k/2

(
r2k(2k − 2)(k − 2)k−1

)−1/2
.

∼ edn/2(2π)k/2
(
k(k − 1)

dn

)k/2
(2k − 2)−1/2(k − 2)−(k−1)/2

= I

as claimed.

3 Second moment: proof of Proposition 2(b)

Throughout this section, fix positive integers d and k ≥ 3 satisfying d < 2(k − 1) log(k − 1).
Assume 2 divides dn and k divides n. Let C1 and C2 be equitable k-colourings of a pairing
P ∈ Pn,d. The colour count of (C1, C2) is the k-by-k matrix M = [mp,q] where mp,qn/k is the
number of cells coloured p in C1 and coloured q in C2. Let M be the set of k-by-k doubly
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stochastic matrices (i.e. nonnegative matrices with each row sum and column sum equal to
1). Since the colourings are equitable, we must have M ∈ M. Define T (M) to be the set of
triples (P,C1, C2) where P ∈ Pn,d and (C1, C2) is a pair of equitable k-colourings of P having
colour count M . Then,

E(Y 2) =
∑

M∈M∩ k
n
Zk2

|T (M)|
|Pn,d|

. (3.1)

In order to estimate the sum in (3.1), we first obtain an exact expression for |T (M)|, where
M = [mp,q] is any k-by-k doubly stochastic matrix whose entries are integer multiples of k/n.

For all 1 ≤ p, q ≤ k we must choose mp,qn/k cells to be assigned the colour p in the first
colouring and q in the second colouring. We say that such a cell and its points have label
(p, q). The number of ways of doing this is given by

the multinomial coefficient
n!∏

1≤p,q≤k
(mp,qn/k)!

.

Now we must select the edges of the pairing in a way which is compatible with the two
colourings. Suppose we know the number bpqrs of edges from points labelled (p, q) to points
labelled (r, s) for all 1 ≤ p, q, r, s ≤ k with p 6= r and q 6= s. Then we choose, for each ordered
pair of labels ((p, q), (r, s)), which bpqrs of the points labelled (p, q) will be paired with points
labelled (r, s). The number of ways of doing this is∏

1≤p,q≤k

(dmp,qn/k)!∏
1≤r,s≤k
r 6=p,s 6=q

bpqrs!
.

Finally, for each unordered pair of labels {(p, q), (r, s)}, we choose a bijection between the
points labelled (p, q) and the points labelled (r, s) that were designated to be paired with
each other. The number of ways of doing this is∏

1≤p,q,r,s≤k
p<r,q 6=s

bpqrs!.

Observe that the only restrictions on bpqrs required in our counting are

bpqrs = brspq ∀p, q, r, s ∈ {1, . . . , k}, r 6= p, s 6= q, (3.2)∑
1≤r,s≤k
r 6=p,s6=q

bpqrs = dmp,qn/k ∀p, q ∈ {1, . . . , k}. (3.3)

Thus, the total number of triples (P,C1, C2) in T (M) is

|T (M)| = n!

( ∏
1≤p,q≤k

(dmp,qn/k)!

(mp,qn/k)!

) ∑
B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs!
, (3.4)
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where B(M,n) is the set of tuples of non-negative integers (bpqrs) 1≤p,q,r,s≤k
r 6=p,s6=q

satisfying (3.2)

and (3.3). Note that (3.4) is the expression used in [2].
As we shall see later, the main weight of the sum in (3.1) corresponds to terms in which M

is ‘near’ (1/k)Jk, where Jk denotes the k-by-k matrix of ones. To state this more precisely, for
δ > 0 and any positive integer p, we define Bp(δ) to be the set of p-by-p matrices M = [mij]
for which maxi,j |mij − (1/k)| < δ. It will be shown that the essential contribution to (3.1)
comes from terms such that M ∈ Bk(ε log n/n1/2), where ε > 0 is a small constant that will
be specified later. Thus we now proceed to bound |T (M)|/|Pn,d| for each M ∈M∩ (k/n)Zk2 ,
and then find more accurate asymptotic expressions for M ∈ Bk(ε log n/n1/2).

We begin by estimating the ratio of factorials in (3.4). Recall that one can write Stirling’s
formula as x! = ξ(x)(x/e)x where ξ is a function satisfying ξ(x) ∼

√
2πx as x → ∞ and

ξ(x) ≥ 1 for all x ≥ 0. Thus,∏
1≤p,q≤k

(dmp,qn/k)!

(mp,qn/k)!
=

∏
1≤p,q≤k

ξ(dmp,qn/k)(dmp,qn/(ke))
dmp,qn/k

ξ(mp,qn/k)(mp,qn/(ke))mp,qn/k

=
∏

1≤p,q≤k

ξ(dmp,qn/k)

ξ(mp,qn/k)
ddmp,qn/k

(mp,qn

ke

)(d−1)mp,qn/k

= ddn
( n
ek

)(d−1)n ∏
1≤p,q≤k

ξ(dmp,qn/k)

ξ(mp,qn/k)
mp,q

(d−1)mp,qn/k, (3.5)

where in the final step we used
∑

1≤p,q≤kmp,q = k which holds because M is doubly stochastic.

(Throughout the article we use the convention 00 = 1 and 0 log 0 = 0.) Moreover, since
ξ(mp,qn/k) ≥ 1 and ξ(dmp,qn/k) = O(n1/2) for each mp,q, we obtain the following bound,
which does not depend on the particular M .

∏
1≤p,q≤k

(dmp,qn/k)!

(mp,qn/k)!
= O

(
nk

2/2
)
ddn
( n
ek

)(d−1)n
( ∏

1≤p,q≤k

mp,q
mp,q

)(d−1)n/k

. (3.6)

Next we bound the inner sum in (3.4), by further applying Stirling’s formula, and also using
the obvious crude bound |B(M,n)| = O(nk

4
) on the number of terms.∑

B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs!
∼
∑
B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

ξ(bpqrs)(bpqrs/e)bpqrs

≤
∑
B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

(bpqrs/e)bpqrs

= O
(
nk

4
)
edn/2 max

B(M,n)

{ ∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs
bpqrs

}
.

The following result allows us to derive a more explicit bound, conveniently expressed in terms
of M and n. The proof follows the ideas in [2] and is given later in this section.
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Lemma 5 Let M = [mpq] be a fixed matrix in M, and let (bpqrs) 1≤p,q,r,s≤k
p<r,q 6=s

be any tuple of

non-negative reals satisfying (3.2) and (3.3). Then,

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs
bpqrs
≤

(
1∏

1≤p,q≤kmp,q
mp,q

)dn/k(∑
1≤p,q,r,s≤k

p 6=r,q 6=s
mp,qmr,s

dn

)dn/2

.

Hence, we immediately deduce that

∑
B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs!
= O

(
nk

4
)( 1∏

1≤p,q≤kmp,q
mp,q

)dn/k(∑
1≤p,q,r,s≤k

p6=r,q 6=s
mp,qmr,s

dn/e

)dn/2

. (3.7)

Finally, define for any M ∈M

ϕ(M) = −1

k

∑
1≤p,q≤k

mp,q logmp,q +
d

2
log

 1

k2

∑
1≤p,q,r,s≤k

p 6=r,q 6=s

mp,qmr,s


= −1

k

∑
1≤p,q≤k

mp,q logmp,q +
d

2
log

(
1− 2

k
+

1

k2

∑
1≤p,q≤k

mp,q
2

)
. (3.8)

(Recall the convention 00 = 1 and 0 log 0 = 0.) By combining (3.6), (3.7), the Stirling formula
estimate n! ∼

√
2πn(n/e)n and (2.2), we have

|T (M)|
|Pn,d|

=

√
2πn(n/e)n√
2(dn/e)dn/2

O
(
nk

2/2
)
ddn
( n
ek

)(d−1)n
( ∏

1≤p,q≤k

mp,q
mp,q

)(d−1)n/k

×O
(
nk

4
)( 1∏

1≤p,q≤kmp,q
mp,q

)dn/k(∑
1≤p,q,r,s≤k

p6=r,q 6=s
mp,qmr,s

dn/e

)dn/2

= O
(
nk

4+k2/2+1/2
)
kn

( ∏
1≤p,q≤k

1

mp,q
mp,q

)n/k
 1

k2

∑
1≤p,q,r,s≤k

p 6=r,q 6=s

mp,qmr,s


dn/2

≤ poly(n)knenϕ(M), (3.9)

for some polynomial poly(n) not depending on the particular M . This is a sufficient bound
on |T (M)|/|Pn,d|, since it will allow us to show that the sum in (3.1) receives a negligible
contribution due to terms with M away from (1/k)Jk.

It remains to find a suitable asymptotic expression of |T (M)|/|Pn,d| forM ∈ Bk(ε log n/n1/2),
by improving our previous estimates in (3.6) and (3.7). Before that, we state two technical al-
gebraic results which will be needed in the asymptotic calculations. Hereinafter, 1 represents
the k-dimensional vector of ones, while 1(i) represents the k-dimensional vector with entry
1 at position i and 0 elsewhere; Ik denotes the k-by-k identity matrix; vecA is the vector
formed by stacking the columns of a matrix A to form a single column vector; and A⊗2 is
simply A⊗ A, with the standard notation ⊗ for the Kronecker product of matrices.
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Lemma 6 Consider the vectors

f (p) =
√
p√
p+1

(
−1
p

∑p
l=1 1

(l) + 1(p+1)
)
, 1 ≤ p ≤ k − 1

f (k) = 1√
k
1.

Define f (p,q) = f (p) ⊗ f (q) for 1 ≤ p, q ≤ k.

(a) An orthonormal basis of eigenvectors for the matrix (Jk − Ik)⊗2 + (k− 1)2Ik2 is given by
{f (p,q)}kp,q=1 with corresponding eigenvalues

λp,q = k2 − 2k + 2, 1 ≤ p, q ≤ k − 1
λp,k = (k − 1)(k − 2), 1 ≤ p ≤ k − 1
λk,q = (k − 1)(k − 2), 1 ≤ q ≤ k − 1
λk,k = 2(k − 1)2.

The smallest of these eigenvalues is (k − 1)(k − 2).

(b) Similarly, the eigenvectors of (Jk + Ik)
⊗2 are also {f (p,q)}kp,q=1, and the corresponding

eigenvalues are 1 with multiplicity (k−1)2, k+1 with multiplicity 2(k−1), and (k+1)2

with multiplicity 1.

Proof. Immediate by checking that the eigenvectors satisfy the required properties.

Lemma 7 Let A = [ai,j] be a k-by-k matrix whose rows and columns each have sum 0. Define
Ã to be the submatrix formed from A by deleting the last row and column. Let {f (i,j)}ki,j=1 be
the orthonormal basis defined in the statement of Lemma 6. Then,

(a) (vecA)>f (i,k) = (vecA)>f (k,j) = 0 for 1 ≤ i, j ≤ k,

(b)
k−1∑
i=1

k−1∑
j=1

(
(vecA)>f (i,j)

)2
=

k∑
i=1

k∑
j=1

a2
i,j, and

(c) (vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ =
k∑
i=1

k∑
j=1

a2
i,j.

The proof of Lemma 7 is given later in this section. We now proceed with the asymptotic
calculations for M ∈ M ∩ (k/n)Zk2 ∩ Bk(ε log n/n1/2). So define the matrix A = A(M) =
[ap,q] by A = M − (1/k)Jk. Note that each row and column of A must have sum 0, and
moreover ap,q < ε log n/n1/2 for each p, q ∈ {1, . . . , k}. Let Ã be the submatrix formed
from A by deleting the last row and column. Under the new assumptions, we first derive a
new asymptotic formula for the expression computed in (3.5). For mp,q = 1/k + ap,q with
ap,q = O(log n/n1/2) we have

ξ(dmp,qn/k)

ξ(mp,qn/k)
∼
√
dmp,qn/k√
mp,qn/k

∼
√
d
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for 1 ≤ p, q ≤ k, and we expand∑
1≤p,q≤k

mp,q logmp,q =
∑

1≤p,q≤k

(
1

k
+ ap,q

)(
log

1

k
+ log (1 + kap,q)

)
=

∑
1≤p,q≤k

(
−1

k
log k +

k

2
a2
p,q +O(a3

p,q)

)
= k

(
− log k +

1

2
(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ

)
+O(log3 n/n3/2)

where we used Lemma 7(c) to rewrite
∑

p,q a
2
p,q in the final step. Combining these estimates

we can rewrite (3.5) as∏
1≤p,q≤k

(dmp,qn/k)!

(mp,qn/k)!
∼ dk

2/2ddn
( n

ek2

)(d−1)n

exp

(
n
d− 1

2
(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ

)
.

(3.10)
Next we rewrite the inner sum in (3.4) in terms of the natural generating function, letting
square brackets denote the extraction of a coefficient∑

B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s

1

bpqrs!
=

[ ∏
1≤p,q≤k

xp,q
dmp,qn/k

] ∏
1≤p,q,r,s≤k

p<r,q 6=s

∞∑
i=0

(xp,qxr,s)
i

i!

=
[ ∏

1≤p,q≤k

xp,q
dmp,qn/k

]
exp

(
1

2

∑
1≤p,q,r,s≤k

p6=r,q 6=s

xp,qxr,s

)
.

The following result provides an asymptotic characterisation of that coefficient. The proof
uses the saddlepoint method, and can be found at the end of the section. Note that our still
unspecified ε is determined by the statement.

Lemma 8 There exists ε > 0 such that for each M ∈ M ∩ (k/n)Zk2 ∩ Bk(ε log n/n1/2) the

coefficient C of
[∏

1≤p,q≤k xp,q
dmp,qn/k

]
in the generating function exp

(
1
2

∑
1≤p,q,r,s≤k

p6=r,q 6=s
xp,qxr,s

)
satisfies

C ∼ γ(k)√
π

(
1

dn

)k2/2(
k(k − 1)√
dn/e

)dn

exp

(
−nd(k − 1)2(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ

2(k2 − 2k + 2)

)
,

where γ(k) is the constant γ(k) =
kk

2
(k − 1)k(k−1)

(2π)k2/2−1/2(k2 − 2k + 2)(k−1)2/2(k − 2)k−1
.

Hence, in view of (3.10) and Lemma 8, we obtain for M ∈ M∩ (k/n)Zk2 ∩ Bk(ε log n/n1/2)
an asymptotic expression for (3.4) which improves the bound already stated in (3.9)

|T (M)|
|Pn,d|

∼ γ(k)
(k − 1)dn

nk2/2−1/2k(d−2)n
exp

(
−nk

2 − 2k − d+ 2

2(k2 − 2k + 2)
(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ

)
,

(3.11)
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where γ(k) is the constant defined in Lemma 8.
We are now in good shape to estimate the sum (3.1). We begin by computing the con-

tribution of the terms near (1/k)Jk. For a (k − 1)-by-(k − 1) matrix M define M to be the
k-by-k matrix formed from M by adding a new row and column so that every row sum and
column sum is 1. Recall the definition of Bp(δ) and define Bp(δ) = {M | M ∈ Bp(δ)}. Now
we set

δ =
ε log n

(k − 1)2n1/2
,

and consider M = M ′ for M ′ ∈ Bk−1(δ) ∩ k
n
Z(k−1)2 . A straightforward application of the

triangle inequality shows that Bk−1(δ) ⊆ Bk((k − 1)2δ), and therefore M ∈ Bk(ε log n/n1/2).
So M is nonnegative (for large enough n) and hence M ∈M. Furthermore, the entries of M
are in k

n
Z because they are integer linear combinations of k/n and 1 = k

n
× n

k
, using the fact

that k divides n. This shows that
|T (M)|
|Pn,d|

is a term in the sum (3.1), suggesting that we express (3.1) as E(Y 2) = S1 + S2 where

S1 =
∑

M ′∈Bk−1(δ)∩ k
n
Z(k−1)2

|T (M ′)|
|Pn,d|

and S2 is the sum of the remaining terms. Notice moreover that if M ′ ∈ Bk−1(δ) ∩ k
n
Z(k−1)2

and M = M ′, then the matrix A = M − (1/k)Jk has all entries ap,q < εn−1/2 log n. Hence the
expansion given in (3.11) is valid, and we can express

S1 ∼ γ(k)
(k − 1)dn

nk2/2−1/2k(d−2)n

∑
M ′∈Bk−1(δ)∩ k

n
Z(k−1)2

enf(M ′), (3.12)

where

f(M ′) = −k
2 − 2k − d+ 2

2(k2 − 2k + 2)
(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ,

and Ã = M ′ − (1/k)Jk−1. By iterating the Euler–Maclaurin summation formula (see [1],
p. 806), we have ∑

M ′∈Bk−1(δ)∩ k
n
Z(k−1)2

enf(M ′) ∼
(n
k

)(k−1)2
∫
M ′∈Bk−1(δ)

enf(M ′)dM ′.

Setting H = k2−2k−d+2
2(k2−2k+2)

(Jk−1 + Ik−1)⊗2 and using Lemma 6 (b) for the eigenvalues of (Jk−1 +

Ik−1)⊗2, we deduce that H is positive definite and has determinant

k2k−2

(
k2 − 2k − d+ 2

k2 − 2k + 2

)(k−1)2

. (3.13)
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Here we used the fact that k2− 2k− d+ 2 > 0, which is guaranteed from our assumptions on
d and k. Now we may apply Lemma 4 to conclude

S1 ∼ γ(k)
(k − 1)dn

nk2/2−1/2k(d−2)n

(n
k

)(k−1)2
(∫

[−∞,∞](k−1)2
enf(M ′)dM ′ +O

(
e−c log2 n

))
∼ γ(k)

(k − 1)dn

nk2/2−1/2k(d−2)n

(n
k

)(k−1)2 (2π/n)(k−1)2/2

|detH|1/2

=
kk(k − 1)k(k−1)

(k2 − 2k − d+ 2)(k−1)2/2(2π(k − 2))k−1
n−(k−1)k2n

(
1− 1

k

)dn
. (3.14)

To prove the proposition it suffices to show S2 = o(S1). Let M be an index of any term of
S2. This implies M 6∈ Bk−1(δ), so we must have M ∈M \ Bk(δ) since Bk(δ) ∩M ⊆ Bk−1(δ).
Recall now the definition of ϕ in (3.8), and obtain by direct substitution

ϕ

(
1

k
Jk

)
= log k + d log

(
1− 1

k

)
.

From Theorem 7 in [3] (see also (5) in the same paper) we have that if d < dk−1 := 2(k −
1) log(k − 1) for each M ∈M,

ϕ(M) ≤ ϕ

(
1

k
Jk

)
− dk−1 − d

4(k − 1)2

(∑
p,q

mp,q
2 − 1

)

= log k + d log

(
1− 1

k

)
− dk−1 − d

4(k − 1)2

∑
p,q

(
mp,q −

1

k

)2

.

In particular, for each M ∈M \ Bk(δ),

ϕ(M) ≤ log k + d log

(
1− 1

k

)
− dk−1 − d

4(k − 1)2
δ2. (3.15)

By combining (3.15) with the bound on the general term obtained in (3.9) and also taking
into account that the number of terms in S2 is at most O(nk

2
), we conclude

S2 = O(nk
2

) poly(n)k2n

(
1− 1

k

)dn
exp

(
− dk−1 − d

4(k − 1)2
ε log2 n

)
≤ poly′(n)k2n

(
1− 1

k

)dn
n−Θ(logn),

for some polynomial poly′(n). Thus S2 = o(S1), and this completes the proof.

It only remains to prove Lemmas 5, 7 and 8.
Proof of Lemma 5. Let L = L(M) be the polytope consisting of all non-negative tuples
L = (`pqrs) 1≤p,q,r,s≤k

p<r,q 6=s
in Rk2(k−1)2/2 such that∑

1≤r,s≤k
r 6=p,s 6=q

`pqrs = dmp,q ∀p, q ∈ {1, . . . , k}, (3.16)
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where for p > r and q 6= s we used the duplicate notation `pqrs = `rspq to denote the
coordinates. For each L ∈ L, define

ψ(L) =
∏

1≤p,q≤k

mp,q
dmp,q∏

1≤r,s≤k
p<r,q 6=s

`pqrs
`pqrs

.

Our aim is to show that for all L ∈ L

ψ(L) ≤

(∑
1≤p,q,r,s≤k

p6=r,q 6=s
mp,qmr,s

dk

)dk/2

. (3.17)

This is indeed equivalent to the statement of the lemma, after setting bpqrs = `pqrsn/k and
performing straightforward manipulations.

As a first case, assume that mpq > 0 for all p, q in {1, . . . , k}. We define L̂ to be the
polytope of all non-negative tuples L = (`pqrs) 1≤p,q,r,s≤k

p<r,q 6=s
in Rk2(k−1)2/2 such that∑

1≤p,q,r,s≤k
p<r,q 6=s

`pqrs = dk/2, (3.18)

and for each L ∈ L̂, let

ψ̂(L) =
∏

1≤p,q,r,s≤k
p<r,q 6=s

(
mp,qmr,s

`pqrs

)`pqrs
.

Observe that L ⊂ L̂, and moreover the restriction of ψ̂ to L is equal to ψ. Our goal is to
maximise log ψ̂ over L̂, and thus provide a bound on ψ over L. We first show that log ψ̂ does
not maximise on the boundary. Note that the boundary of L̂ consists of points having some 0
coordinate (but at least some coordinate must be strictly positive). Let us choose an arbitrary
boundary point L0, and assume without loss of generality that `1122 = 0 and `1221 > 0. Let
Lε be the point with the same coordinates as L0 but replacing `1122 by ε and `1221 by `1221− ε.
For small enough ε > 0, Lε lies in L̂, and moreover

lim
ε→0+

d

dε
log ψ̂(Lε) = +∞,

so the maximum cannot occur at L0. Hence, log ψ̂ is maximised in the interior of L̂ and the
maximiser(s) must satisfy the following Lagrange equations

log(mp,qmr,s)− log `pqrs − 1 = λ ∀p, q, r, s ∈ {1, . . . k}, p < r, q 6= s.

These are equivalent to

`pqrs = mp,qmr,se
−λ−1 ∀p, q, r, s ∈ {1, . . . k}, p < r, q 6= s,

which combined with (3.18) yield

`pqrs = dk
mp,qmr,s∑

1≤p′,q′,r′,s′≤k
p′ 6=r′,q′ 6=s′

mp′,q′mr′,s′
∀p, q, r, s ∈ {1, . . . k}, p < r, q 6= s.
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From the uniqueness of the solution, we deduce that it must be the maximiser of log ψ̂ (and

ψ̂). The value of ψ̂ at this point can be easily computed by substitution(∑
1≤p,q,r,s≤k

p6=r,q 6=s
mp,qmr,s

dk

)dk/2

,

which proves the bound in (3.17) under the assumption that mpq > 0 for all p and q. To
extend the argument to the other cases, we first define

P = {(M,L) |M ∈M, L ∈ L(M)},
and with a mild abuse of notation denote by

ψ(M,L) =
∏

1≤p,q≤k

mp,q
dmp,q∏

1≤r,s≤k
p<r,q 6=s

`pqrs
`pqrs

,

the natural extension of ψ to P . Notice that ψ is continuous in P . We showed so far that,
for any M in the interior of M (i.e. mpq > 0) and any L ∈ L(M),

ψ(M,L) ≤

(∑
1≤p,q,r,s≤k

p6=r,q 6=s
mp,qmr,s

dk

)dk/2

.

Hence, this inequality can be extended by continuity to any M on the boundary of M, and
thus to any (M,L) ∈ P . This concludes the proof of (3.17).

Proof of Lemma 7. We begin by proving (a). Let j ∈ {1, 2, . . . , k}. Since f (k,j) = f (k)⊗f (j)

is a linear combination of terms of the form 1⊗1(q) =
∑k

p=1(1(p)⊗1(q)), (1 ≤ q ≤ k), we have

that (vecA)>f (k,j) is a linear combination of terms of the form
∑k

p=1(vecA)>(1(p) ⊗ 1(q)) =∑k
p=1 aq,p = 0 since the row sums of A are 0. A similar argument shows (vecA)>f (i,k) = 0 for

i ∈ {1, 2, . . . , k} using the fact that the column sums of A equal 0.
To prove (b) we apply (a) to write

k−1∑
i=1

k−1∑
j=1

(
(vecA)>f (i,j)

)2
=

k∑
i=1

k∑
j=1

(
(vecA)>f (i,j)

)2
,

which is the sum of the squares of the coordinates of vecA in the basis given by {f (i,j)}ki,j=1.
Since the basis is orthonormal, this expression is simply the square of the norm of vecA with
respect to the standard basis,

∑k
i=1

∑k
j=1 a

2
i,j.

To prove part (c) we begin by writing

k∑
i=1

k∑
j=1

a2
i,j

= a2
k,k +

k−1∑
i=1

a2
i,k +

k−1∑
j=1

a2
k,j +

k−1∑
i=1

k−1∑
j=1

a2
i,j

=

(
k−1∑
i=1

k−1∑
j=1

ai,j

)2

+
k−1∑
i=1

(
−

k−1∑
j=1

ai,j

)2

+
k−1∑
j=1

(
−

k−1∑
i=1

ai,j

)2

+
k−1∑
i=1

k−1∑
j=1

a2
i,j.
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Since (
k−1∑
i=1

k−1∑
j=1

ai,j

)2

= (vecÃ)>J⊗2
k−1vecÃ,

k−1∑
i=1

(
k−1∑
j=1

ai,j

)2

= (vecÃ)>(Jk−1 ⊗ Ik−1)vecÃ,

k−1∑
j=1

(
k−1∑
i=1

ai,j

)2

= (vecÃ)>(Ik−1 ⊗ Jk−1)vecÃ,

k−1∑
i=1

k−1∑
j=1

a2
i,j = (vecÃ)>I⊗2

k−1vecÃ,

and (Jk−1 + Ik−1)⊗2 = J⊗2
k−1 + (Jk−1 ⊗ Ik−1) + (Ik−1 ⊗ Jk−1) + I⊗2

k−1, part (c) is proved.

Before proceeding with the proof of Lemma 8, we need the following technical result.

Lemma 9 Let δ ∈ (0, 2π/5) and fix an integer k ≥ 3. For each 1 ≤ p, q ≤ k, let −π ≤ θp,q ≤
π. Suppose maxp,q |θp,q| > δ and minp,q |θp,q| < π − δ. Then there exist p, q, r, and s with
p 6= r and q 6= s such that

δ

2
≤ |θp,q + θr,s| ≤ 2π − δ

2
.

Proof. There are two cases. In the first case, suppose δ < |θp,q| < π − δ for some p and q.
Let S be the set of pairs

S = {(r, s) | 1 ≤ r ≤ k, r 6= p, 1 ≤ s ≤ k, s 6= q}.

The set S is nonempty as k ≥ 2. If there exists (r, s) ∈ S with |θp,q + θr,s| > δ/2 then

δ

2
< |θp,q + θr,s| ≤ |θp,q|+ |θr,s|

< π − δ + π

< 2π − δ

2

and we are finished. Otherwise, all θr,s with (r, s) ∈ S satisfy |θp,q + θr,s| ≤ δ/2; i.e. they
are all within δ/2 units of −θp,q, and so, because δ < |θp,q| < π − δ, they all have the same
sign and satisfy δ/2 ≤ |θr,s| ≤ π − δ/2. Now let (r, s) ∈ S and choose any (t, u) with
t ∈ {1, 2, . . . , k} \ {p, r} and u ∈ {1, 2, . . . , k} \ {q, s}. This is possible because k ≥ 3. Since
(t, u) ∈ S we have, using the above observations, δ < |θr,s + θt,u| < 2π − δ, which implies the
required result.

For the remaining case, we must have |θp,q| ∈ [0, δ] ∪ [π − δ, π] for all 1 ≤ p, q ≤ k. We
claim there exist p, q, r, s with p 6= r, q 6= s, |θp,q| ∈ [0, δ], and |θr,s| ∈ [π − δ, π]. If we prove
the claim then we are finished because

δ

2
< π − 2δ ≤ ||θp,q| − |θr,s|| ≤ |θp,q + θr,s| ≤ |θp,q|+ |θr,s| ≤ δ + π < 2π − δ

2
.
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Assume for contradiction that the claim is false. By the hypothesis of the proposition there
exist p and q with |θp,q| < π− δ. Since |θp,q| ∈ [0, δ]∪ [π− δ, π] for every 1 ≤ p, q ≤ k we must
have |θp,q| ∈ [0, δ]. Since we are assuming that the claim is false, we must have |θr,s| ∈ [0, δ]
for the (k − 1)2 pairs (r, s) with r 6= p and s 6= q. But the hypothesis of the proposition also
gives us (t, u) with |θt,u| > δ, so an argument analogous to the previous one shows there must
exist (k − 1)2 pairs (v, w) with |θv,w| ∈ [π − δ, π]. Since (k − 1)2 + (k − 1)2 exceeds k2, the
total number of ordered pairs, we have a contradiction, as required.

Proof of Lemma 8. We use the saddlepoint method to estimate the coefficient C in the
statement. Using Cauchy’s integral formula, C can be written in terms of an integral around
the product of circles zp,q = ρp,q exp(iθp,q), −π ≤ θp,q ≤ π, (1 ≤ p, q ≤ k), as follows,

C =
1

(2πi)k2

∫ exp
(

1
2

∑
p6=r
q 6=s

zp,qzr,s

)
∏

p,q z
dmp,qn/k+1
p,q

∏
p,q

dzp,q

=
1

(2π)k2
∏

p,q ρ
dmp,qn/k
p,q

×
∫
θ∈[−π,π]k2

exp
(

1
2

∑
p6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s)

)
exp(i

∑
p,q θp,qdmp,qn/k)

∏
p,q

dθp,q. (3.19)

Viewing θ = vec([θp,q]) as a k2-dimensional vector, let g(θ) denote the integrand in the above
expression. Consider

g(θ + π1) =
exp

(
1
2

∑
p6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s+2π)

)
exp(i

∑
p,q θp,qdmp,qn/k + iπ

∑
p,q dmp,qn/k)

=
exp

(
1
2

∑
p6=r
q 6=s

ρp,qρr,se
i(θp,q+θr,s)

)
exp(i

∑
p,q θp,qdmp,qn/k + iπdn)

= g(θ),

which holds since
∑

p,qmp,q = k and dn is even. Setting δ = log n/
√
n, this tells us that the

integral over the region {θ | |θp,q| ≤ δ for 1 ≤ p, q ≤ k} equals the integral over the region
{θ | π − δ ≤ |θp,q| ≤ π for 1 ≤ p, q ≤ k}. Set each ρp,q to be the common value

ρp,q = ρ =

√
dn

k(k − 1)
.

We will see that the integral over each of these regions is asymptotic to

I =
edn/2√

2

(
2π

dn

)k2/2 kk2(k − 1)k(k−1) exp
(
−nd(k−1)2(vecÃ)>(Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2(k − 2)k−1

≥ K exp

(
dn

2
− ε′ log2 n

)
(3.20)
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(using ap,q < ε log n/n1/2) where K and ε′ are constants depending on ε. We will also show
that the integral over the remaining region is o(I). The lemma then follows by combining
these two facts with (3.19).

To see that the integral over the remaining region is o(I), let θ be any vector in this region.
By the definition of this region we must have minp,q |θp,q| < π − δ and maxp,q |θp,q| > δ. By
Lemma 9 there exist p∗, q∗, r∗, s∗ ∈ {1, . . . , k} with p∗ 6= r∗ and q∗ 6= s∗ such that

δ

2
≤ |θp∗,q∗ + θr∗,s∗| ≤ 2π − δ

2
.

Now

cos(θp∗,q∗ + θr∗,s∗) < cos

(
δ

2

)
= 1− δ2

8
+O(δ3)

so the absolute value of the integrand is

|g(θ)| =

∣∣∣exp
(

1
2

∑
p 6=r
q 6=s

ρ2ei(θp,q+θr,s)
)∣∣∣∣∣∣exp(i

∑
p,q θp,qdmp,qn/k)

∣∣∣
= exp

1

2

∑
p6=r
q 6=s

ρ2 cos(θp,q + θr,s)


≤ exp

(
1

2
ρ2
(
(k2(k − 1)2 − 1)1 + cos(θp∗,q∗ + θr∗,s∗)

))
= exp

(
1

2
ρ2

(
(k2(k − 1)2 − 1)1 + 1− δ2

8
+O(δ3)

))
= exp

(
1

2
ρ2k2(k − 1)2 − ρ2 (log n)2

16n
+O(ρ2n−3/2(log n)3)

)
= exp

(
dn

2
− d(log n)2

16k2(k − 1)2
+ o(1)

)
recalling that we chose ρ = k−1(k − 1)−1

√
dn and δ = log n/

√
n. Hence |g(θ)| = o(I) if we

choose ε sufficiently small so that the constant ε′ in (3.20) satisfies ε′ < d/ (16k2(k − 1)2).
It remains to show that ∫

θ∈[−δ,δ]k2
g(θ)dθ ∼ I.

For θ ∈ [−δ, δ]k2 we have

log g(θ) = ρ2 1

2

∑
p6=r
q 6=s

(
1 + i(θp,q + θr,s)−

(θp,q + θr,s)
2

2
+O(|θ|3)

)
− idn

k

∑
p,q

θp,qmp,q.
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Regrouping the terms and substituting mp,q = k−1 + ap,q this becomes

log g(θ) =
ρ2

2
k2(k − 1)2

+
∑
p,q

θp,q

(
2i(k − 1)2ρ

2

2
− idn

k

(
1

k
+ ap,q

))

− ρ2

2

(k − 1)2
∑
p,q

θ2
p,q +

∑
p6=r
q 6=s

θp,qθr,s


+ O(ρ2|θ|3)

Let c be the constant c = d/(2k2(k − 1)2). Recalling ρ = k−1(k − 1)−1
√
dn we find

log g(θ) =
dn

2
− idn

k
(vecA)>θ − cnθ>Bθ +O(n−1/2(log n)3) (3.21)

where B is the matrix
B = (k − 1)2Ik2 + (Jk − Ik)⊗2.

Define h(θ) = −i(dn/k)(vecA)>θ − cnθ>Bθ. Lemma 6 gives us an orthonormal basis
{f (p,q)}kp,q=1 of eigenvectors for B and corresponding sequence of eigenvalues (λp,q)

k
p,q=1. In-

troduce the new variables (τp,q)
k
p,q=1 to perform the change of basis θ =

∑
p,q f

(p,q)τp,q. This
gives

h(θ) = −idn
k

(vecA)>
∑
p,q

f (p,q)τp,q − cn
∑
p,q

λp,qτ
2
p,q

=
∑
p,q

(
−i(dn/k)(vecA)>f (p,q)τp,q − cnλp,qτ 2

p,q

)
.

Let p, q ∈ {1, . . . , k}. Using the identity∫ ∞
−∞

eax−bx
2

dx =

√
π

b
exp

(
a2

4b

)
(for b > 0), we have that

∫
[−∞,∞]k2

exp(h(θ))dθ is a product of terms of the form∫ ∞
−∞

exp

(
−idn

k
(vecA)>f (p,q)τp,q − cnλp,qτ 2

p,q

)
dτp,q

=

√
π

cnλp,q
exp

(
−d2n((vecA)>f (p,q))2

4ck2λp,q

)
.
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So by Lemma 4, for some constant c′ > 0 we have∫
[−δ,δ]k2

exp(h(θ))dθ =

∫
[−∞,∞]k2

exp(h(θ))dθ +O(e−c
′(logn)2)

=
∏
p,q

√
π

cnλp,q
exp

(
−d2n((vecA)>f (p,q))2

4ck2λp,q

)
+O(e−c

′(logn)2)

∼
∏
p,q

√
π

cnλp,q
exp

(
−d2n((vecA)>f (p,q))2

4ck2λp,q

)

since the entries of A are less than εn−1/2 log n, c′ does not depend on ε and we will choose ε
to be sufficiently small. Recalling (3.21) we now have∫

[−δ,δ]k2
g(θ)dθ ∼ edn/2

∏
p,q

√
π

cnλp,q
exp

(
−d2n((vecA)>f (p,q))2

4ck2λp,q

)
(3.22)

We will simplify the above product using the values of λp,q given in Lemma 6. First, the
contribution to the product from 1 ≤ p, q ≤ k − 1 is

k−1∏
p=1

k−1∏
q=1

√
π

cnλp,q
exp

(
−d2n((vecA)>f (p,q))2

4ck2λp,q

)

∼
(√

π

cn(k2 − 2k + 2)

)(k−1)2 k−1∏
p=1

k−1∏
q=1

exp

(
−d2n((vecA)>f (p,q))2

4ck2(k2 − 2k + 2)

)

=

(√
π

cn(k2 − 2k + 2)

)(k−1)2

exp

(
−d2n(

∑k−1
p=1

∑k−1
q=1(vecA)>f (p,q))2

4ck2(k2 − 2k + 2)

)

=

(√
π

cn(k2 − 2k + 2)

)(k−1)2

exp

(
−d2n(vecÃ)>(Jk−1 + Ik−1)⊗2vecÃ

4ck2(k2 − 2k + 2)

)

where the last step used Lemmata 7(b) and 7(c). The contribution to the product when
exactly one of p or q equals k is (√

π

cn(k − 1)(k − 2)

)2(k−1)

since Lemma 7(a) tells us that ((vecA)>f (p,q))2 = 0 when p = k or q = k. When p = q = k
the contribution to the product is √

π

2cn(k − 1)2
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Substituting these contributions into (3.22) we get∫
[−δ,δ]k2

g(θ)dθ

∼ edn/2
( π
cn

)k2/2 exp
(
−nd2(vecÃ)>(Jk−1+Ik−1)⊗2vecÃ

4ck2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2 ((k − 1)(k − 2))k−1

√
2(k − 1)

= edn/2
(

2πk2(k − 1)2

dn

)k2/2 exp
(
−nd(k−1)2(vecÃ)>(Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2 ((k − 1)(k − 2))k−1

√
2(k − 1)

=
edn/2√

2

(
2π

dn

)k2/2 kk2(k − 1)k(k−1) exp
(
−nd(k−1)2(vecÃ)>(Jk−1+Ik−1)⊗2vecÃ

2(k2−2k+2)

)
(k2 − 2k + 2)(k−1)2/2(k − 2)k−1

= I,

as required.

4 . . . and for n not divisible by k

Define k′ = 2k if dk is odd or k′ = k otherwise. Note that the conditions we assumed so far
(i.e. n divisible by k and dn even) can be rewritten as simply n ≡ 0 (mod k′). Therefore we
only need to consider the case n ≡ r (mod k′) for each integer r such that 0 < r < k′ and
dr is even. One possibility is to rework the whole argument of this paper but with colourings
that are not exactly equitable. Instead, the asymmetry in the argument can be somewhat
reduced by using an argument relating different models of random regular graphs. We first
treat the case n ≡ 0 (mod k′) in more depth, and prove the following.

Theorem 10 Fix nonnegative integers d ≥ 3, k and ` such that d < 2(k − 1) log(k − 1).
Consider the d-regular graphs with n vertices (n divisible by k and dn even) and a distinguished
ordered set of ` edges whose endpoints induce a perfect matching (i.e. no two edges in the
distinguished set are adjacent to the same edge or incident with the same vertex). Let G be
chosen uniformly at random from such structures. Then G a.a.s. has a k-colouring in which
all ` distinguished edges have end vertices coloured 1 and 2.

Proof. Consider the probability space Ωn,d,` with uniform probability distribution, and whose
underlying set consists of pairings in Pn,d with an ordered set L of ` distinguished pairs of

points, such that no two pairs in L are incident with the same vertex. Let Ŷ denote the
number of equitable k-colourings of a pairing containing L, in which the distinguished pairs
join vertices of colours 1 and 2. We will show that

EŶ ∼
(
k

2

)−`
EY, (4.1)

that (1.1) holds with Y replaced by Ŷ (and no other adjustment), and that

E(Ŷ 2) ∼
(
k

2

)−2`

E(Y 2). (4.2)
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The theorem then follows immediately by applying small subgraph conditioning as in the
proof of Theorem 1 for n divisible by k, which was given in Section 1.

To show (4.1) and the analogue of (1.1), we define for integers r ≥ 0 and p1, . . . , pr ≥ 0
N(p1, . . . , pr) to be the set of triples (P,C,Γ) such that P is a pairing in Pn,d, C is a equitable
k-colouring of P and Γ = (Γi,j) 1≤i≤r

1≤j≤pi

is an ordered (p1 + · · · + pr)-tuple of different cycles in

P . In view of that, we can express

E(Y [X1]p1 · · · [Xr]pr) =
|N(p1, . . . , pr)|
|Pn,d|

and

E(Ŷ [X1]p1 · · · [Xr]pr) =
1

|Ωn,d,`|
∑

(P,C,Γ)∈N(p1,...,pr)

h(P,C), (4.3)

where h(P,C) gives the number of choices of the ordered set L of ` pairs in P that have
the required colours at their ends. Almost all triples in N(p1, . . . , pr) correspond to pairings
with dn/(k(k−1)) +O(n1/2 log n) edges between each two colour classes, while the remaining
triples contribute with at most a O(n−Θ(logn)) factor of the total. To verify this claim, observe
that for each fixed C and Γ, the number of pairings P ∈ Pn,d compatible with C and Γ has a
factor F =

∑
{bi,j} 1/(

∏
1≤i<j≤k bi,j!), where bi,j denotes the number of edges between colour

classes i and j excluding the edges of the cycles in Γ (see the computation of EY and E(Y X1)
in Section 2). After using Stirling’s formula to estimate the factorials in F , it is easy to check
that the main contribution to F is due to terms with all bi,j = dn/(k(k − 1)) + O(n1/2 log n)
and that the weight of the remaining terms is O(F/nΘ(logn)) as required. Next, observe that
h(P,C) ∼ (dn/(k(k−1)))` if P has dn/(k(k−1))+O(n1/2 log n) edges with endpoints coloured
1 and 2, and that h(P,C) is always O(n`). Therefore, we can estimate the sum in the right
side of (4.3) and combine it with |Ωn,d,`| ∼ |Pn,d|(dn/2)` to deduce

E(Ŷ [X1]p1 · · · [Xr]pr) ∼
(
k

2

)−`
E(Y [X1]p1 · · · [Xr]pr),

as required for (4.1) and the analogue of (1.1).
Similarly, to estimate E(Ŷ 2) we define N ′ to be the set of triples (P,C1, C2) such that P

is a pairing in Pn,d and C1, C2 are equitable k-colourings of P , and write

E(Y 2) =
|N ′|
|Pn,d|

and E(Ŷ 2) =
1

|Ωn,d,`|
∑

(P,C1,C2)∈N ′
h′(P,C1, C2), (4.4)

where h′(P,C1, C2) gives the number of choices of the ordered set L of ` pairs in P that have the
required colours at their ends in both colourings C1 and C2. Given P ∈ Pn,d, let bpqrs denote
the number of edges between points coloured (p, q) and points coloured (r, s). We will show
that almost all triples in N ′ correspond to pairings with bpqrs = dn/(k2(k−1)2)+O(n1/2 log n),
and that the remaining triples are at most a O(n−Θ(logn)) fraction of the total. Then (4.2)
follows immediately from (4.4), since h′(P,C1, C2) is always O(n`) and also h′(P,C1, C2) ∼
(2dn/(k2(k−1)2))` whenever b1122 ∼ b1221 ∼ dn/(k2(k−1)2). To prove the remaining claim, we
first recall from the last lines of the proof of Proposition 2(b) that we can restrict our attention
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to triples (P,C1, C2) with colour count M = [mp,q] where |mp,q − 1/k| < ε log n/n1/2, since
all other triples contribute O(|N ′|/nΘ(logn)) to |N ′|. Observe that while counting |N ′| we
encounter a factor F ′ =

∑
B(M,n)

∏
1≤p,q,r,s≤k

p<r,q 6=s
1/bpqrs!. We can easily bound the weight in F ′

due to terms in which some bpqrs is not dn/(k2(k − 1)2) + O(n1/2 log n), and find an extra
factor of O(n−Θ(logn)) compared to the estimation of F ′ in Lemma 8.

Proof of Theorem 1 (for n not divisible by k). It only remains to show that if d ≥ 3
and d < 2(k − 1) log(k − 1), then Gn,d is a.a.s. k-colourable for n not divisible by k. We use
the type of argument employed at the end of Section 3 of [18].

Recall the definition of k′ in the beginning of the section, and let r be any integer such
that 0 < r < k′ and dr is even. Suppose n ≡ r (mod k′). Take a random d-regular graph G
with n vertices, and assume that the first r vertices v1, v2, . . . , vr are at distance at least 4.
This happens a.a.s. and we simply discard G if this property fails to hold. Delete v1, v2, . . . , vr
and then choose a random matching of the dr former neighbours of these vertices, and add
the matching to the edges of the graph G. Give the matching edges a random order. Observe
that no two matching edges are adjacent to the same edge by construction. It is easy to show
and well known that a given vertex of a random d-regular graph is a.a.s. not in a cycle of
length less than 4 (or 100, for that matter). It follows that a.a.s. no multiple edges occur
due to the new edges. Throw the graph away if this last property fails to hold. The result
is a random d-regular graph on n − r ≡ 0 (mod k′) vertices with an ordered set of dr/2
distinguished edges, no two adjacent to the same edge or incident with the same vertex. Let
us call this G′.

The distribution of G′ is uniform, since for each G′ the number of ways of reinstating the
edges to v1, v2, . . . , vr is exactly

(
dr

d,d,...,d

)
. Thus, by Theorem 10, G′ a.a.s. has a k-colouring

such that the dr/2 distinguished edges join vertices of colours 1 and 2. We can use exactly
this colouring on V (G) \ {v1, v2, . . . , vr}, and colour v1, v2, . . . , vr with colour 3 to obtain a
k-colouring of G. (Note that k ≥ 3 from our assumptions on d and k).

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, volume 55 of National Bureau of Standards
Applied Mathematics Series. U.S. Government Printing Office, 1972. 10th printing.

[2] D. Achlioptas and C. Moore. The chromatic number of random regular graphs. In
Proc. 7th International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems and 8th International Workshop on Randomization and Computation,
volume 3122 of Lect. Notes Comput. Sc., pages 219–228. Springer, 2004.

[3] D. Achlioptas and A. Naor. The two possible values of the chromatic number of a random
graph. Ann. Math., 162(3):1333–1349, 2005.

[4] N. Alon and M. Krivelevich. The concentration of the chromatic number of random
graphs. Combinatorica, 17(3):303–313, 1997.

27



[5] S. Ben-Shimon and M. Krivelevich. Random regular graphs of non-constant degree:
Concentration of the chromatic number. Discrete Math., To appear.

[6] B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled
regular graphs. Eur. J. Combin., 1(4):311–316, 1980.

[7] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55, 1988.

[8] A. Coja-Oghlan, K. Panagiotou, and A. Steger. On the chromatic number of random
graphs. J. Comb. Theory B, 98(5):980–993, 2008.

[9] C. Cooper, A. M. Frieze, B. A. Reed, and O. Riordan. Random regular graphs of
non-constant degree: Independence and chromatic number. Comb. Probab. Comput.,
11(4):323–341, 2002.

[10] N. de Bruijn. Asymptotic methods in analysis. North Holland Publishing Co., third
edition, 1970.

[11] J. Dı́az, A. C. Kaporis, G. D. Kemkes, L. M. Kirousis, X. Pérez, and N. C. Wormald.
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