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de la Universitat Politècnica de Catalunya
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Abstract

This dissertation presents the author’s work in some problems involving different models of
random graphs. First it contains a technical contribution towards solving the open problem
of deciding whether with high probability a random 5-regular graph can be coloured with
three colours. Next, the author proposes a model for the establishment and maintenance
of communication between agents in a mobile ad-hoc network (manet), which is called the
walkers model. We assume that the agents move through a fixed environment modelled by
a motion graph, and are able to communicate only if they are at a distance of at most d.
As the agents move randomly, we analyse how the connectivity between a set of w agents
evolves over time, asymptotically for a large number N of vertices, when w also grows large.
The particular topologies of the environment which are studied here are the cycle and the
toroidal grid. For the latter, the results apply under any ℓp-normed distance, for 1 ≤ p ≤ ∞.
Then, the dissertation follows with a continuous counterpart of the walkers model. Namely,
it presents a model for manets based on random geometric graphs over the 2-dimensional
unit torus, where each node moves under the random walk mobility model. More precisely,
our model starts from a random geometric graph over the torus [0, 1)2, with n nodes and
radius exactly at the connectivity threshold rc. Then each node chooses independently
a random angle in [0, 2π) and moves for a number m of steps a fixed distance s > 0 in
that direction. After these steps, each node again chooses a new angle and starts moving
in that new direction, repeating the change of direction every m steps. We compute the
expected number of steps for which the resulting graph stays connected or disconnected. In
addition, for static random geometric graphs with radius at the connectivity threshold rc,
we provide asymptotic expressions on the probability of existence of components according
to their sizes. Finally, in the last part of this work, we show in a constructive way that,
for any arbitrary ℓp-normed distance, 1 ≤ p ≤ ∞, the property that a random geometric
graph under that distance contains a Hamiltonian cycle exhibits a sharp threshold at radius
r =

√
log n/(αpn), where αp is the area of the unit disk in the ℓp norm.





Resum

Aquesta tesi presenta l’aportació de l’autor en alguns problemes relacionats amb diferents
models de grafs aleatoris. Primer conté la contribució tècnica envers la solució del problema
obert de decidir si amb alta probabilitat un graf 5-regular aleatori pot ésser acolorit amb
tres colors. A continuació, l’autor proposa un model per a l’establiment i manteniment
de la comunicació entre agents mòbils en una xarxa mòbil ad-hoc (manet), anomenat el
model dels walkers. Suposem que els agents es mouen a través d’un medi modelitzat per
un graf motriu, i que són capaços de comunicar-se entre ells si són a distància com a molt
d. A mesura que els agents es belluguen a l’atzar, analitzem com evoluciona en el temps
la connectivitat entre un conjunt de w agents, asimptòticament per a un gran nombre N
de vèrtexs, quan w també creix. Les topologies particulars del medi que estudiem aqúı són
el cicle i la graella toröıdal. En aquesta darrera, els resultats fan referència a qualsevol
distància normada ℓp, amb 1 ≤ p ≤ ∞. Seguidament, la tesi continua amb una variant
cont́ınua del models dels walkers. Concretament, es presenta un model per a manets basat
en grafs aleatoris geomètrics sobre el torus unitat 2-dimensional, on cada node es belluga
segons el model de mobilitat random walk. Més detalladament, el nostre model parteix d’un
graf aleatori geomètric en el torus [0, 1)2, amb n nodes i radi exactament en el llindar rc de
la connectivitat. Aleshores, cada node escull a l’atzar i de manera independent un angle de
[0, 2π) i es mou durant m passes una distància fixada s > 0 en aquella direcció. Després
d’aquestes passes, tots els nodes escullen de nou un altre angle i comencen a moure’s cap
allà, repetint el canvi de direcció cada m passes. Es calcula el nombre esperat de passes
durant les quals el graf resultant es manté connex o inconnex. A més, per als grafs aleatoris
geomètrics estàtics en el llindar de la connectivitat rc, donem expressions asimptòtiques de la
probabilitat d’existència de components segons les seves talles. Finalment, en la darrera part
d’aquest treball, mostrem de manera constructiva que, per a qualsevol distància normada
ℓp arbitrària, 1 ≤ p ≤ ∞, la propietat que un graf aleatori geomètric contingui un cicle
Hamiltonià exhibeix un llindar abrupte en radi r =

√
log n/(αpn), on αp és l’àrea del disc

unitat en la norma ℓp.





Resumen

Esta tesis presenta la aportación del autor en algunos problemas relacionados con distintos
modelos de grafos aleatorios. Primero contiene la contribución técnica hacia la solución
del problema abierto de decidir si con alta probabilidad un grafo 5-regular aleatorio puede
ser coloreado con tres colores. A continuación, el autor propone un modelo para el es-
tablecimiento y mantenimiento de la comunicación entre agentes móviles en una red móvil
ad-hoc (manet), llamado el modelo de los walkers. Supongamos que los agentes se mueven
a través de un medio modelizado por un grafo motriz, y que son capaces de comunicarse
entre ellos si están a distancia como mucho d. A medida que los agentes se mueven al
azar, analizamos cómo evoluciona en el tiempo la conectividad entre un conjunto de w
agentes, asintóticamente para un número grande N de vértices, cuando w también crece.
Las topoloǵıas particulares del medio que estudiamos aqúı son el ciclo y la malla toroidal.
En ésta última, los resultados se refieren a cualquier distancia normada ℓp, con 1 ≤ p ≤ ∞.
Seguidamente, la tesis continúa con una variante continua del modelo de los walkers. Conc-
retamente, se presenta un modelo para manets basado en los grafos aleatorios geométricos
sobre el toro unidad 2-dimensional, donde cada nodo se mueve según el modelo de movilidad
random walk. Más en detalle, nuestro modelo parte de un grafo aleatorio geométrico en el
toro [0, 1)2, con n nodos y radio exactamente en el umbral rc de la conectividad. Entonces,
cada nodo escoge al azar y de manera independiente un ángulo de [0, 2π) y se mueve durante
m ∈ Z pasos una distancia fijada s > 0 en aquella dirección. Después de esos pasos, todos
los nodos escogen de nuevo otro ángulo y empiezan a moverse hacia alĺı, repitiendo el cambio
de dirección cada m pasos. Se calcula el número esperado de pasos durante los cuales el
grafo resultante se mantiene conectado o desconectado. Además, para los grafos aleatorios
geométricos estáticos en el umbral de la conectividad rc, damos expresiones asintóticas de la
probabilidad de existencia de componentes según sus tallas. Finalmente, en la última parte
de este trabajo, mostramos de manera constructiva que, para cualquier distancia normada
arbitraria ℓp, 1 ≤ p ≤ ∞, la propiedad de que un grafo aleatorio geométrico contenga un
ciclo Hamiltoniano presenta un umbral abrupto en radio r =

√
log n/(αpn), donde αp es el

área del disco unidad en la norma ℓp.
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To arrive there is your ultimate goal.
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Konstantinos P. Kavafis [1911]
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Introduction

Random graphs have transcended the pure mathematical framework, to become relevant
models and benchmarks in scientific disciplines such as information technology, physics
and biology. Chapter 1 of this dissertation deals with the chromatic number of random
d-regular graphs. As it will be explained there, this problem has given rise to beautiful
research in the physics community. The chapter begins with a brief introduction on the
colourability of random graphs. It follows the author’s technical contribution towards the
solution of the open problem of deciding whether with high probability a random 5-regular
graph can be coloured with three colours. An extended abstract of the result was presented
at the European Symposium on Algorithms (esa’05) [22] and at the European Conference
on Complex Systems [24]. A long version has been sent for publication1.

Nowadays, communication networks have become an ubiquitous component of soci-
ety. In particular, an increasing interest has arisen in the study of mobile ad-hoc networks
(manets) and also in the theoretical aspects of random geometric graphs, as models for such
networks. A random geometric graph results from taking n uniformly distributed points in
some metric space S (usually the unit cube [0, 1]d) and connecting two points if their dis-
tance is at most r, for some prescribed radius r ∈ R

+. Chapter 2 of this dissertation starts
by briefly introducing manets, and then it surveys the main known results on the static
setting of random geometric graphs. For instance, it is known that there exists a value for
r denoted by rc = rc(n) below which a random geometric is disconnected with high proba-
bility and above which it is connected with high probability. In the core of Chapter 2, we
propose a model for the establishment and maintenance of communication between mobile
agents in a manet, which is called the walkers model. We assume that the agents move
through a fixed environment modelled by a motion graph, and are able to communicate if
they are at a distance of at most d. The positions of the agents over the vertices of the

1A preprint of this paper is available at http://www.lsi.upc.es/∼xperez



2 Introduction

motion graph determine an ad-hoc random geometric graph. As the agents move randomly,
we analyse how the connectivity between a set of w agents evolves in time, asymptotically
for a large number N of vertices, when w also grows large. The particular topologies of the
environment which are studied here are the cycle and the toroidal grid. For the latter, the
results apply under any normed ℓq distance, for 1 ≤ q ≤ ∞. Extended abstracts of the re-
sults in this chapter, were presented at the Symposium on Theoretical Aspects of Computer
Science (stacs’05) [26] and at the Workshop on Efficient and Experimental Algorithms
(wea’05) [67]. A long journal version has been sent for publication1 (see also the technical
report [27]).

Chapter 3 presents a continuous model for mobile ad-hoc networks based on random
geometric graphs over the 2-dimensional unit torus, and where each node moves under the
random walk model. More precisely, the model starts from a random geometric graph over
the torus [0, 1)2, with n nodes and radius exactly at the connectivity threshold rc. Then
each node chooses independently a random angle in [0, 2π) and moves for a number m of
steps a fixed distance s > 0 in that direction. After these steps, all the nodes choose again
a new angle and start moving in that new direction, repeating the change of direction every
m steps. We compute the expected number of steps for which the resulting graph stays
connected or disconnected. Notice that this model can be regarded as a continuous coun-
terpart of the walkers model described in Chapter 2, since the torus [0, 1)2 is approximated
by the toroidal grid when the number of vertices in the grid is large. In fact, both cases are
studied as an attempt to model ad-hoc networks. However, while in Chapter 2 the walkers
move randomly along the edges of a prescribed graph, in Chapter 3 the nodes are allowed to
move “freely” around the unit torus, under the random walk mobility model. The develop-
ments of both chapters have some analogies but many technical details in the arguments are
quite different. In addition, in Chapter 3, for static random geometric graphs with radius
at the connectivity threshold rc, we provide asymptotic expressions on the probability of
existence of components according to their sizes, which was not known before the present
work. This contributes towards the understanding of the behaviour of mid-size components
at the connectivity threshold. The results have been submitted for publication1.

In chapter 4, for an arbitrary ℓp-normed distance, 1 ≤ p ≤ ∞, we show in a construc-
tive way that the property that a random geometric graph contains a Hamiltonian cycle
exhibits a sharp threshold at radius r =

√
log n/(αpn), where αp is the area of the unit disk

in the ℓp norm. The result appeared in SIAM Journal on Discrete Mathematics [25].

Each chapter of the thesis ends with a section containing conclusions and open prob-
lems relevant to the material exposed there.

Notes on Notation and More

Given any two sequences fn and gn taking positive values, we say that fn = O(gn) or
equivalently that gn = Ω(fn) if there exists some C > 0 and some n∗ ∈ N such that for all
n ≥ n∗ we have fn ≤ Cgn. If fn = O(gn) and fn = Ω(gn) then we say that fn = Θ(gn).
Moreover, we say that fn = o(gn) or equivalently that gn = ω(fn) if limn→∞ fn/gn = 0.

We say that fn is finite if fn < +∞, i.e. it is not identically infinity but possibly
fn → ∞. We usually reserve the word bounded to describe fn in the case that fn = O(1).
This distinction is relevant in Chapters 2 and 3, where fn = E(Xn) for some sequence Xn
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of random variables.

Observation It is well known that a real sequence f(n) converges to f ∈ R ∪ {−∞, +∞}
iff for any subsequence f(nk) we can find a subsubsequence f(nkm) which has limit f . In
addition, given any c ≥ 0 and any sequence f(n) of non-negative real numbers, we can find
a subsequence f(nk) with the following properties: f(nk) is either o(1), Θ(1) or ω(1), and
moreover either f(nk) ≤ c or f(nk) > c.

Hence, for each non-negative expression or parameter f(n) considered hereinafter, we
can assume w.l.o.g. that it is either o(1), Θ(1) or ω(1), and also that given c ≥ 0 either
f(n) ≤ c or f(n) > c. Otherwise in view of the above observation, for each subsequence of
f(n) we can find a subsubsequence with the above-mentioned properties, use that subsubse-
quence in the argument and extend the results to f(n). The assumption is made throughout
the dissertation without explicitly mentioning it.

In all the topics covered in this work, there is involved a sequence of probability spaces
indexed by n (or also N in Chapter 2), which usually denotes the size of some graph. We
derive asymptotic results as n (or N) grows large. Given a sequence of events En, we say
that E holds asymptotically almost surely (a.a.s.) if P(E) = 1 − o(1).

Throughout the dissertation, u.a.r will abbreviate uniformly at random, which means
‘selected at random with uniform probability’. We denote by 1[E ] the indicator function of
an event E .

Unless otherwise specified, the base of all logarithms is assumed to be e. Moreover,
we follow the convention that 0 log 0 = 0 and 00 = 1. In view of this, functions such as
x log x + (1 − x) log(1 − x) and xx(1 − x)1−x are continuous in [0, 1].

Given k1, . . . , kr ∈ N with k = k1 + · · · kr, the usual multinomial coefficient will
be denoted by

(
k

k1,...,kr

)
= k!

k1!···kr! . Given k, r ∈ N, the falling factorial is written [k]r =

k(k − 1) · · · (k − r + 1). In particular E[X]r = E
(
X(X − 1) · · · (X − r + 1)

)
denotes the rth

factorial moment of the random variable X.





1

The Chromatic Number of

Random 5-Regular Graphs

1.1 A Succinct History of Colourability of Random Graphs.

Two of the early models of random graphs are the G(n,m) and G(n, p) models due to Erdős
and Rényi [30]. The G(n, p) model was also independently proposed by Gilbert [34]. Namely
given p ∈ [0, 1], a random graph G(n, p) is obtained by considering a set of n labelled vertices
and selecting each of the possible

(n
2

)
edges independently from each other with probability

p. On the other hand given m ∈ Z (0 ≤ m ≤
(n
2

)
), G(n,m) is a random instance selected

with uniform probability from the set of all graphs on n labelled vertices and m edges.
Usually p and m are functions of n, and we are interested in asymptotic properties of the
models for n growing large. Hereinafter, we say that an event holds asymptotically almost
surely (a.a.s.) if it occurs with probability tending to 1 as n goes to infinity.

Two important parameters of a random graph are the average degree and the edge
density. One can verify that the average degree of G(n, p = d

n) (respectively G(n,m = dn
2 ))

is p(n − 1) ∼ d (respectively 2m/n = d). The edge density of a random graph is defined to
be one half of the average degree. It is known [46] that G(n, p) and G(n,m) with the same
average degree are somehow equivalent, in the sense that in many cases they have analogous
properties. For sake of simplicity, in the following G(n, d

n) will stand for G(n, p = d
n)

whenever there is no possibility of confusion.
Given a graph G = (V,E) a legal colouring is an assignment of colours to the vertices

in V in such a way that no adjacent vertices get the same colour. Given G = (V,E) and
k ∈ Z

+, the k-colourability (k-Col) problem is to decide whether there is a legal colouring
of G with at most k colours. Similarly, the chromatic number problem is to find which is the
minimal number of colours χ(G) required to colour G legally. It is known that for general
deterministic graphs, the chromatic number problem is NP-Complete [33]. Note that the
two problems are intimately related, and often their study cannot be carried separately.



6 The Chromatic Number of Random 5-Regular Graphs

The first results on the k-colourability problem on random graphs were due to Erdős
and Rényi.

Theorem 1.1.1 ([30]).

(i). If d ≤ 1 − ǫ, then a.a.s. all the connected components of G(n, d
n) have at most one

cycle and O(log n) vertices. Consequently, a.a.s. χ(G(n, d
n)) ≤ 3.

(ii). If d ≥ 1 + ǫ, then a.a.s. there exists a unique connected component of G(n, d
n) with

Ω(n) cycles (and in particular one odd cycle). Consequently, a.a.s. χ(G(n, d
n)) ≥ 3.

It was left open by them the question whether the chromatic number of G(n, 1
n) is a.a.s.

3. The answer would be given 29 years latter in the positive by  Luczak and Wierman [56].
Cheeseman, Kanefsky and Taylor [19] and also Culberson and Gent [21] observed that

for each fixed k, there is a threshold average degree dk such that if d < dk, then G(n, d
n) is

a.a.s. k-colourable, while if d > dk then G(n, d
n) is a.a.s. not k-colourable. Moreover, they ex-

perimentally obtained that d3 ≈ 4.7. Braunstein, Mulet, Pagnani, Weigt and Zecchina [16]
gave an analytic (non-rigorous) verification that d3 ≈ 4.69, by using the replica method
from statistical physics.

In [2] Achlioptas and Friedgut gave a formal proof that k-Col has a sharp threshold:

Theorem 1.1.2 (Achlioptas–Friedgut). ∀k ≥ 3 there is a sequence dk(n) such that ∀ǫ > 0 :

• A random graph with average degree dk(n) − ǫ is a.a.s. k-colourable.

• A random graph with average degree dk(n) + ǫ is a.a.s. not k-colourable.

Notice that Theorem 1.1.2 does not imply the convergence of dk(n). Thus it remains
as an open problem to prove if dk(n) converges and if so, to what value. As a corollary to
Theorem 1.1.2 they obtained that for any given d, if we have that G(n, d

n) is k-colourable

with probability at least ǫ > 0 for all n, then G(n, d
n) is a.a.s. k-colourable.

The basic upper bound technique applied to the 3-colourability problem for random
graphs is the following: Given a graph G, let C(G) the class of the legal 3-colourings of G.
Then for any model of random graph G,

P(G ∈ 3-col) = P(|C(G)| ≥ 1) ≤ E(|C(G)|).

Therefore, by computing E(|C(G(n, d
n))|), which is easy, and by finding the values of d for

which E(|C(G(n, d
n))|) → 0, we get a trivial upper bound of 5.42 for d3. But as we pointed

out before, experiments seem to indicate the the phase transition for 3-col occurs below
at d3 ≈ 4.69. The reason for this discrepancy is the fact that, when 4.69 < d < 5.42,
a class of graphs with small probability but with many legal 3-colourings contributes too
much to E(|C(G(n, d

n))|). In order to improve this upper bound, it is natural to consider
some restricted type of legal 3-colourings with the property that whenever one graph G
is 3-colourable it must admit some colouring of that restricted type. Thus the expected
number of such colourings of G(n, d

n) is smaller, and we obtain a more realistic bound.
Following this idea, Kaporis, Kirousis and Stamatiou [49] considered rigid 3-colourings, i.e.
colourings where flipping the colour of one vertex to a higher colour in the 0 < 1 < 2 ordering
destroys the legality of the colouring. They proved that d3 ≤ 4.99. A different approach was
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introduced by Dubois, Boufkhad and Mandler [29], where they restricted the class of graphs
to avoid the perturbation of having a few instances with many legal 3-colourings. In fact,
it is known that G(n, d

n) has a.a.s. a degree sequence close to a truncated Poisson (cf. [46]),
and thus they considered the space of graphs restricted to typical graphs, i.e. graphs with
exactly a truncated Poisson degree sequence. More precisely, for any k, the percentage of
vertices with degree k is e−ddk

k! , where d is the average degree. They proved that, in G(n, d
n),

the few graphs which have not a truncated Poisson degree sequence have many 3-colourings,
which explains the bad estimates obtained from the expectation. Dubois et al. proved that
for the class of typical graphs, d3 ≤ 4.854, which gets closer to the analytical non-rigorous
results of Zecchina et al. [16]. At the present, this is the best known upper bound for the
rigorous evaluation of d3.

A graph G has empty k-core if it does not contain any subgraph with minimum degree
at least k. It is straightforward to check that any graph G which has empty k-core must be
k-colourable. Using this fact, Pittel, Spencer and Wormald [69] studied the emergence of
the k-core in G(n, d

n) and proved that d3 ≥ 3.35. Then, Achlioptas and Moore [3] analysed
via the Differential Equations Method, a non-backtracking version of the Brélaz heuristic
(cf. [17]) to obtain the best lower bound for 3-Col on G(n, d/n) at the present, which is
d3 ≥ 4.03.

Let us turn back our attention to the general chromatic number problem on random
graphs. I.e., given p = p(n) with 0 < p < 1, we want to find the chromatic number
of G(n, p). Grimmett and McDiarmid [37] gave the first lower bound on χ(G(n, p)), by
determining the range of p such that G(n, p) has not and independent set of size n/k (and
thus χ(G(n, p)) > k). After a long series of papers by different authors, Bollobás [14] and
independently Kučera and Matula [57] proved that if p is fixed, then

χ(G(n, p)) ∼ n

2 log n
.

If we consider the sparse case p = d/n for fixed d ∈ R
+,  Luczak [55] proved that for all

d ∈ R
+, there exists kd ∈ N such that a.a.s. χ(G(n, d

n)) is either kd or kd + 1. However,
 Luczak did not give information on these two values. Achlioptas and Naor [5], using the
second moment method, proved that if kd is defined as the smallest k such that d < 2k log k,
then a.a.s. χ(G(n, d

n)) ∈ {kd, kd + 1}. Moreover, if d ∈ [(2k − 1) log k, 2k log k] then a.a.s.

χ(G(n, d
n)) = kd + 1, which determines the exact value for about half of the d’s. The

second moment method will play a very important role in this chapter, therefore it is worth
to look at it with more detail (See also [45] and Remark 3.1 in [46]). Let X be a non-
negative random variable that depends on n. As n grows large EX may also grow large,
but P(X > 0) may approach zero. However, if E(X2) does not approach infinity too fast
compared to the square of EX, then it may turn out that P(X > 0) stays away from zero.
In fact,

P(X > 0) ≥ (E(X))2

E(X2)
. (1.1)

So if E(X2) = Θ((EX)2) then Pr[X > 0] is bounded away from 0. Achlioptas and Naor [5]
used the second moment method, with X counting the number of balanced k-colourings
of G(n, d/n) (i.e. colourings with the same number of vertices with any given colour).
Then E(X2) turns out to be a sum of exponential terms. They used a martingale-based
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concentration result to find the term with the largest base, which yields the value of the
sum, and thus they proved the above-mentioned result.

An important result was obtained by using tools from physics: Krza̧ka la, Pagnani
and Weigt [54] studied the geometry of the space of solutions for k-colourings. For G ∈
G(n, d/n), they considered the space of all k-colour assignments (legal or not) to the vertices
of G. They defined a cluster as a set of colourings such that it is possible to go from one
colouring to another by changing the colours of at most 2 vertices. Then, they showed that
if d < (1 − ǫ)k log k, all legal k-colourings form a unique cluster in this space. Therefore
if we use a greedy strategy to change colours, sooner or later the algorithm is going to hit
the cluster. So it is easy to solve the chromatic problem for d < (1 − ǫ)k log k. Moreover,
they also proved that as d increases, the clusters break down into exponentially many legal
clusters and exponentially many almost legal clusters. Therefore, any change in the colours
of a few vertices gives rise to more illegally coloured edges. As a consequence, local search
algorithms are not expected to produce results for average degrees beyond the breaking
down point of the unique cluster, the algorithm will get stuck on the local maximal (local
colours clusters). The range d ≥ (1 − ǫ)k log k is called the hard-colourability region.

1.1.1 Colouring Random Regular Graphs

So far we have been discussing about the Erdős and Rényi model of random graphs. Let us
turn our attention to another type of random graphs, which are the centre of this chapter.
A random d-regular graph G(n, d) is a random instance selected with uniform probability
from the class G(n, d) of d-regular graphs on n labelled vertices. In order to study this
model, it is usually used the well-known pairing or configuration model P(n, d), which was
first introduced by Bollobás [13]. A d-pairing is a perfect matching on a set of dn points
which are grouped into n cells of d points each. Let P(n, d) be the set of d-pairings of dn
points, and denote by P(n, d) a random element of P(n, d) selected u.a.r. A random pairing
P(n, d) corresponds in a natural way to a random d-regular multigraph (possibly containing
loops or multiple edges), in which each cell becomes a vertex. The reader should refer to [78]
for further aspects of the pairing model such as the following well know result.

Theorem 1.1.3. If a property holds a.a.s. for P(n, d), then it also holds a.a.s. for G(n, d).

From the early 90’s the there has been a considerable effort in studying the chromatic
number of a random regular graph. In the present subsection, we sketch the highlights of
the developments in the field. Frieze and  Luczak [31], proved that χ

(
G(n, d)

)
∼ d/(2 log d)

a.a.s. (as d → ∞). However, they did not give any result for fixed values of d. Molloy and
Reed [61] proved that if k(1−1/k)d/2 < 1 then G(n, d) is not k-colourable a.a.s. Notice that
this result implies that ∀d ≥ 6 , a.a.s. G(n, d) is not 3-colourable. The result was proved by
a clever use of the first moment method to show that the expected number of k-colourings
of a d-regular pairing is at most k(1 − 1/k)d/2. Achlioptas and Moore [3] showed that
χ
(
G(n, 4)

)
= 3 with probability bounded away from 0. The proof was based on the analysis

of a backtracking-free version of Brélaz heuristic, together with the fact that G(n, 4) is a.a.s.
not bipartite. Later, they showed in [4] that the chromatic number of a random regular
graph of degree d ranges a.a.s. in {kd, kd + 1, kd + 2}, where kd is the smallest integer k
such that d < 2k log k. Shi and Wormald [74, 75] proved that: a.a.s. χ

(
G(n, 4)

)
= 3; a.a.s.

χ
(
G(n, 5)

)
∈ {3, 4}; a.a.s. χ

(
G(n, 6)

)
= 4; if 7 ≤ d ≤ 9 then a.a.s. χ

(
G(n, d)

)
∈ {4, 5}; and
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a.a.s. χ
(
G(n, 10)

)
∈ {5, 6}. The proof of the previous result was algorithmic: Properly

colour all short cycles of G(n, d) up to some length l. Then, greedily colour the remaining
vertices following some priority given by an ordering of the possible labels. At any moment,
each vertex is labelled (i, j), where i is the number of non-coloured neighbours and j is the
number of available colours.

Recall the above-mentioned work by Krza̧ka la, Pagnani and Weigt [54], where they
defined the hard colouring region. In that paper they also proved that the solution space
of 3-colourings of 5-regular graphs has many clusters. Therefore, the 3-colouring of 5-
regular graphs is in the hard colouring region, so it seems difficult that classical algorithmic
techniques will work to find out if a 5-regular graph is 3-colourable.

In the same paper, they also observed by using Survey propagation techniques that
almost all 5-regular graphs seem to have chromatic number 3. Therefore regarding the the 3-
colourability of d-regular graphs, the situation was: 4-regular graphs are a.a.s. 3-colourable;
6-regular are a.a.s. not 3-colourable; the problem of deciding whether a 5-regular is 3-
colourable falls in the hard colouring region, and the physicists gave non-rigorous evidence
that most of the 5-regular are 3-colourable.

1.2 Preliminaries

In this chapter we study the locally rainbow balanced 3-colourings of a 5-regular graph,
where a colouring is balanced if the number of vertices of each colour is equal, and locally
rainbow if every vertex is adjacent to vertices of all the other colours. We show that a 5-
regular graph admits such a colouring with probability bounded away from 0. In Section 1.8
we briefly describe how this probability can be raised to 1−o(1). The proof contains one non-
rigorous step which is sustained by empirical evidence (see Maximum Hypothesis below).
Our results are asymptotic with respect to the number of vertices n, which is restricted to
the multiples of 6. (The number of vertices of a 5-regular graph must be even, and having
a balanced colouring requires n to be also divisible by 3.)

The main technique in the argument is the second moment method (see (1.1)): Indeed,
we compute the expectation EX and second moment E(X2) of the number X of locally
rainbow balanced colourings, asymptotically. Then, assuming that a certain four-variable
function has a unique maximum at a given point in a bounded domain (see again Maximum
Hypothesis), we prove that E(X2) is asymptotically a constant times (EX)2.

For our calculations, we use the previously described pairing model P(n, d). A colour-
ing of a paring is an assignment of colours to the cells such that it defines a colouring of the
corresponding multigraph. Moreover, each point of the pairing inherits the colour of the
cell containing it.

The estimation of the second moment amounts essentially to counting the number
of pairs of locally rainbow balanced colourings on pairings in P(n, 5). To give an exact
expression for E(X2) we have to sum over a large number of variables (9 × 36). These
variables express the number of cells that have a given pair of colours (out of the nine
possible pairs) and also have a given distribution of their five points with respect to the pair
of colours on the cells of the points to which they are matched. As we will see there are 36
possible distributions. The computation of the asymptotic value of this expression (even
within a polynomial factor) entails the computation of the global maximum of a function of
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9×36 variables. In Section 1.5 we show how to reduce this computation to the computation
of the maximum of a four-variable continuous function F defined over a closed and bounded
convex domain. As the definitions of F and its domain are technically involved, we postpone
presenting them until Section 1.5, at which point the motivation behind the technicalities
becomes clearer. For the sake of easy reference, in Section 1.7 we repeat these definitions,
and also give an equivalent definition of F .

Regarding the maximisation of F , we show that the boundary of its domain contains no
local maximiser and that there is a local maximum at the interior point (1/9, 1/9, 1/9, 1/9),
by showing that the Hessian of log F is negative definite at this point. Furthermore, by
numerically computing the values of F over a fine grid of its domain we obtain strong
numerical evidence that the point (1/9, 1/9, 1/9, 1/9) is actually the unique maximiser of
F . We state the assumption corroborated by this evidence as:

Maximum Hypothesis. The four-variable function F (n) has a unique global maximum
over its domain at the point (1/9, 1/9, 1/9, 1/9).

Under the Maximum Hypothesis, we can establish the chromatic number of a positive
fraction of the random 5-regular graphs.

Theorem 1.2.1. Under the Maximum Hypothesis, for n divisible by 6 the chromatic number
of G(n, 5) is 3 with probability bounded away from 0.

In the remaining of this chapter we prove Theorem 1.2.1. In Section 1.3, we develop
an exact expression for the first and second moments of X. The asymptotic value of E(X) is
determined in Section 1.4. In Section 1.5, we compute the asymptotic value of E(X2), under
the Maximum Hypothesis. The proof of Theorem 1.2.1 is completed in Section 1.6, where the
previously obtained results on pairings are transferred to simple graphs. In Section 1.7 we
present the empirical validation of the Maximum Hypothesis. Finally, Section 1.8 contains
a brief description on how to override the restriction of n to multiples of 6 and also extend
our result to a.a.s.

1.3 Exact Expression for the Moments

Given a pairing P ∈ P(n, 5), let RP be the class of locally rainbow balanced 3-colourings
of P . Let X =

∣∣RP(n,5)

∣∣ be the random variable that counts the number of locally rainbow
balanced 3-colourings in P(n, 5). Then,

EX =

∣∣{(P,C) : P ∈ P(n, 5), C ∈ RP }
∣∣

∣∣P(n, 5)
∣∣ , (1.2)

E(X2) =

∣∣{(P,C1, C2) : P ∈ P(n, 5), C1, C2 ∈ RP}
∣∣

∣∣P(n, 5)
∣∣ , (1.3)

where |P(n, 5)| = (5n)!/(25n/2(5n/2)!).

1.3.1 First Moment

Below we assume that we are given a pairing P and a locally rainbow balanced 3-colouring
C on P . Recall that a pairing is a perfect matching on 5n points which are organised into
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n cells of 5 points each. Here and throughout the chapter, the cells get colours 0, 1 and 2,
and the arithmetic in the colours is modulo 3, so we can regard colours as elements in Z3.

Let v be a cell of colour i ∈ Z3. The 1-spectrum of cell v is an ordered pair of non-
negative integers. Cell v is said to have 1-spectrum s = (s−1, s1) if sr out of its five points,
r ∈ {−1, 1}, are matched to points in cells of colour i + r. The entries of s are non-negative
because C is locally rainbow, and their sum is 5 because of the 5-regularity of the pairing.
One can check that there are four possible 1-spectra, namely (1, 4), (2, 3), (3, 2) and (4, 1).
We let S1 denote the set of all 1-spectra.

For each i ∈ Z3 and 1-spectrum s ∈ S1, we denote by di
s the scaled with respect to n

number of cells of P which have colour i and 1-spectrum s. Then,

∑

s∈S1

di
s =

1

3
, ∀i ∈ Z3 (1.4)

and therefore
∑

i,s di
s = 1.

Given any two colours i and j in Z3, observe that there are exactly 5n/6 pairs of
points in cells of colours i and j respectively. Hence,

∑

s∈S1

srd
i
s =

5

6
, ∀i ∈ Z3, ∀r ∈ {−1, 1}, (1.5)

which also implies (1.4).
We consider the 6-dimensional polytope

D1 =

{
(di

s)i∈Z3,s∈S1 ∈ R
12 : di

s ≥ 0 ∀i, s,
∑

s

srd
i
s =

5

6
∀i, r

}
,

and the discrete subset

I1 = D1 ∩
(

1

n
Z

12

)
.

We observe that I1 contains all the sequences (di
s)i∈Z3,s∈S1 that correspond to some locally

rainbow balanced 3-colouring, since they all satisfy (1.5). Given a fixed sequence (di
s) ∈ I1,

let us denote by
( n
(di

sn)

)
the multinomial coefficient that counts the number of ways to

distribute the n vertices into classes of cardinality di
sn for all possible values of i and s. Let(

5
s

)
stand for 5!/(s−1!s1!).

By counting the ways to assign 1-spectra to cells, and then colours to points in cells
given their 1-spectra, and finally the number of matchings between colour classes, we have

|{(P,C) : P ∈ P(n, 5), C ∈ RP}| =
∑

(di
s)∈I1





(
n

(di
sn)

)

∏

i,s

(
5

s

)di
sn


(

5n

6
!

)3


 .

In view of (1.2), we divide this by |P(n, 5)| and obtain

E(X) =
25n/2(5n/2)!

(5n)!

∑

(di
s)∈I1





(
n

(di
sn)

)

∏

i,s

(
5

s

)di
sn


(

5n

6
!

)3


 . (1.6)
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1.3.2 Second Moment

Below we assume we are given a pairing P and two locally rainbow balanced 3-colourings
C1 and C2 on P . For i, j ∈ Z3, let V i,j be the set of cells coloured with i and j with respect
to colourings C1 and C2, respectively. Let ni,j = |V i,j|/n and let Ei,j be the set of points
in cells of V i,j. Since C1 and C2 are balanced, we have

∑

i∈Z3

ni,j = 1/3, ∀j ∈ Z3,
∑

j∈Z3

ni,j = 1/3, ∀i ∈ Z3, (1.7)

and therefore
∑

i,j ni,j = 1.

Also, for r, t ∈ {−1, 1}, let Ei,j
r,t be the set of points in Ei,j which are matched with

points in Ei+r,j+t. Recall that the arithmetic in the indices is modulo 3. Let mi,j
r,t = |Ei,j

r,t |/n.

For fixed i and j in Z3, it is convenient to think of the four variables (mi,j
r,t)r,t∈{−1,1} as the

entries of a 2 × 2 matrix mi,j. The rows and columns are indexed by -1 and 1, with -1 for
the first row or column.

mi,j =

[
mi,j

−1,−1 mi,j
−1,1

mi,j
1,−1 mi,j

1,1

]
.

We have that
∑

r,t mi,j
r,t = 5ni,j , and therefore

∑
i,j,r,t m

i,j
r,t = 5. And, since matching sets of

points should have equal cardinalities, we also have that

mi,j
r,t = mi+r,j+t

−r,−t . (1.8)

Let v be a cell in V i,j . The 2-spectrum s of cell v is a 2×2 non-negative integer matrix.
The rows and columns are indexed by -1 and 1, with -1 for the first row or column. Cell v is
said to have 2-spectrum s if sr,t out of its five points, r, t ∈ {−1, 1}, are matched to points in
cells of V i+r,j+t. The sum of the entries of s is 5 because of the 5-regularity of the pairing.
Each row and column sum is at least 1 because both C1 and C2 are locally rainbow. We
let S2 denote the set of possible 2-spectra. See that |S2| has 36 elements, namely

S2 =

{[
1 0
0 4

]
,

[
0 1
4 0

]
,

[
4 0
0 1

]
,

[
0 4
1 0

]
,

[
2 0
0 3

]
,

[
0 2
3 0

]
,

[
3 0
0 2

]
,

[
0 3
2 0

]
,

[
0 1
1 3

]
,

[
1 0
3 1

]
,

[
3 1
1 0

]
,

[
1 3
0 1

]
,

[
0 1
3 1

]
,

[
1 0
1 3

]
,

[
3 1
0 1

]
,

[
1 3
1 0

]
,

[
1 1
0 3

]
,

[
3 0
1 1

]
,

[
1 1
3 0

]
,

[
0 3
1 1

]
,

[
1 1
1 2

]
,

[
1 1
2 1

]
,

[
2 1
1 1

]
,

[
1 2
1 1

]
,

[
0 2
2 1

]
,

[
2 0
1 2

]
,

[
1 2
2 0

]
,

[
2 1
0 2

]
,

[
0 2
1 2

]
,

[
2 0
2 1

]
,

[
1 2
0 2

]
,

[
2 1
2 0

]
,

[
2 2
0 1

]
,

[
1 0
2 2

]
,

[
2 2
1 0

]
,

[
0 1
2 2

]}
. (1.9)
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For each i, j ∈ Z3 and 2-spectrum s ∈ S, we denote by di,j
s the scaled, with respect to

n, number of cells which belong to V i,j and have spectrum s. We have

mi,j =
∑

s∈S2

di,j
s s, (1.10)

ni,j =
∑

s∈S2

di,j
s , (1.11)

and therefore
∑

i,j,s di,j
s = 1.

We consider the 301-dimensional polytope

D2 =



(di,j

s )i,j∈Z3,s∈S ∈ R
324 : di,j

s ≥ 0 ∀i, j, s,
∑

j,s

di,j
s =

1

3
∀i,

∑

i,s

di,j
s =

1

3
∀j,

∑

s

sr,td
i,j
s =

∑

s

s−r,−td
i+r,j+t
s ∀i, j, r, t



 ,

and the discrete subset

I2 = D2 ∩
(

1

n
Z

324

)
.

In view of (1.7)–(1.11), note that I2 contains the set of sequences (di,j
s )i,j∈Z3,s∈S2 that

correspond to some pair of locally rainbow balanced 3-colourings. Given a fixed sequence
(di,j

s ) ∈ I2, let us denote by
( n
(di,j

s n)

)
the multinomial coefficient that counts the number of

ways to distribute the n vertices into classes of cardinality di,j
s n for all possible values of i, j

and s. Define mi,j by (1.10). Also let
(
5
s

)
stand for 5!/

∏
r,t sr,t!.

By counting the ways to assign 2-spectra to cells, the ways to assign colours to points
in cells given their spectra, and finally the number of matchings between colour classes, we
have

|{(P,C1, C2) : P ∈ P(n, 5), C1, C2 ∈ RP}| =

∑

(di,j
s )∈I2





(
n

(di,j
s n)

)

∏

i,j,s

(
5

s

)di,j
s n




∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2






 .

In view of (1.3), we divide this by |P(n, 5)| and obtain

E(X2) =

25n/2(5n/2)!

(5n)!

∑

(di,j
s )∈I2





(
n

(di,j
s n)

)

∏

i,j,s

(
5

s

)di,j
s n




∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2






 . (1.12)

1.4 Asymptotic Value of the First Moment

For sake of simplicity, here and throughout the section we will often write d to denote the
tuple (di

s)i∈Z3,s∈S1. Let us consider the functions

f1(d) =
∑

i,s

di
s(log

(
5

s

)
− log di

s), g1(d) =

√
1∏

i,s di
s

,
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h1(n) =
53/2

2233/2
(2πn)−4 6−5n/2, (1.13)

where f1 is defined over D1 and g1 is defined over the interior of D1. Recall that we follow
the convention that 0 log 0 = 0.

Lemma 1.4.1. The first moment satisfies

E(X) = h1(n)
∑

d∈I1

q1(n,d)ef1(d)n (1.14)

where, as n → ∞ and uniformly over all d, q1(n,d) = O(n6) and q1(n,d) ∼ g1(d) provided
all di

s are bounded away from 0.

Proof. We apply Stirling’s formula and perform simple manipulations to (1.6) to obtain:

E(X) =
25n/2(5n/2)!n!(5n/6)!3

(5n)!

∑

d∈I1



∏

i,s

(5
s

)di
sn

(di
sn)!




∼
√

πn (5πn/3)3 6−5n/2(n/e)n
∑

d∈I1



∏

i,s

(5
s

)di
sn

(di
sn)!




= h1(n)
∑

d∈I1


(2πn)6(n/e)n

∏

i,s

(5
s

)di
sn

(di
sn)!


 . (1.15)

We need to uniformly approximate the factorial of several numbers not necessarily growing
large with n. Stirling’s formula also implies k! =

√
2πη(k)(k/e)k for all k ≥ 0, where

η(k) ∼ k if k → ∞, and η(k) = Θ(k + 1) for all k ≥ 0. In particular, η is non-zero. So we
have

∏

i,s

(5
s

)di
sn

(di
sn)!

=
∏

i,s

(5
s

)di
sn

√
2πη(di

sn)(di
sn/e)di

sn

=
1

(2πn)6(n/e)n

∏

i,s

((5
s

)
/di

s

)di
sn

√
η(di

sn)/n

=
1

(2πn)6(n/e)n
q1(n,d)ef1(d)n,

for a function q1 of the type described in the statement of the lemma. Combining this
with (1.15) yields the lemma.

We consider the maximum base of the exponential part of the terms in (1.14), taken
over all points in the polytope D1:

M1 = max
d∈D1

{
6−5/2ef1(d)

}
.

This is well defined, due to the compactness of the domain and the continuity of the ex-
pression. Note that the exponential behaviour of the first moment is governed by M1 since
the number of terms in the sum in (1.14) is polynomial with respect to n.
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In the next subsection we determine the value of M1. In the following subsection,
based on that result and using a Laplace-type integration argument, we compute the sub-
exponential factors in the asymptotic expression of the first moment.

1.4.1 Computing M1

Let b = (bi
s)i∈Z3,s∈S1 be the point in D1 where bi

s =
(5

s)
90 for all i, s. The following lemma

follows from the application of elementary analysis techniques and the computation of La-
grange multipliers.

Lemma 1.4.2. The function f1 is strictly concave and has a unique maximum in D1 at b.

Proof. We will maximise f1 over the larger domain R ⊃ D1 of all non-negative tuples d

such that ∑

i∈Z3,s∈S1

di
s = 1. (1.16)

We temporarily relax the constraint (1.16) and observe that the Hessian of f1 is negative
definite for any tuple of positive di

s. Therefore f1 is concave in this domain. Then f1 is also
concave in R and in D1, since linear constraints do not affect concavity.

We use the Lagrange multipliers method to find stationary points in the interior of
R. We obtain the following equations

∂f1

∂di
s

= log

(
5

s

)
− 1 − log di

s = λ, ∀i ∈ Z3, ∀s ∈ S1,

where λ is the Lagrange multiplier introduced by the constraint (1.16). There is a unique
solution at the point

di
s =

(
5
s

)

eλ+1
, ∀i ∈ Z3, ∀s ∈ S1,

which must be a maximum by concavity of the function. We observe that this maximiser
also belongs to D1 and the statement follows.

By direct substitution, we obtain:

Lemma 1.4.3. M1 = 6−5/2
(∏

i,s 90d(i,s)
)

=
(

1
6

)5/2
90 =

√
25
24 .

From the above and from (1.14), we get:

Theorem 1.4.4. The expected number of locally rainbow balanced 3-colourings of a 5-regular
pairing approaches infinity as n grows large.

1.4.2 Subexponential Factors of E(X)

Here we complete the computation of the asymptotic expression of E(X) by using a Laplace-
type integration technique described in the following result:
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Lemma 1.4.5. Let A ⊆ R
d be a compact set with non-empty interior. Let g ∈ C1(A) and

f ∈ C3(A) be real functions. Suppose that f has a unique maximum in A, at the interior
point x0, and that the Hessian H of f at x0 is definite negative. Suppose furthermore that
g(x0) 6= 0. Then, we have as n grows large

I :=

∫

A
g(x)ef(x)ndx ∼ 1√

|det H|

(
2π

n

)d/2

g(x0)ef(x0)n.

Proof. Since H is definite negative, there exist an invertible matrix Q such that

H = Q⊥(−Id)Q,

and hence
det H = (−1)d(det Q)2.

Define the following change of variables:

y = φ(x) = Q(x − x0).

Let us consider the functions ĝ = g ◦ φ−1 and f̂ = f ◦ φ−1 − f(x0) defined in Â = φ(A).
Notice that Â is compact with non-empty interior, that f̂ has a unique global maximum

at 0̄, which is an interior point of Â, that f̂(0̄) = 0 but ĝ(0̄) 6= 0, and that
(

∂xi
∂yj

)
= Q−1.

Then, after performing a change of variables, we obtain

I =
1

|det Q|

∫

Â
ĝ(y)e(f̂(ȳ)+f(x0))ndy =

ef(x0)n

√
|det H|

∫

Â
ĝ(y)ef̂(y)ndy.

Let us call

I0 =

∫

Â
ĝ(y)ef̂(y)ndy.

Taking into account that Â is compact, that f̂ is continuous and that the unique maximum
occurs at the interior point 0̄, we can claim that there exists some α > 0 such that, for
small enough ǫ > 0, we can assure that [−ǫ, ǫ]d ⊆ Â and f̂(y) ≤ −α in Â\[−ǫ, ǫ]d. Then,
we can write

I0 =

∫

[−ǫ,ǫ]d
ĝ(y)ef̂(y)ndy +

∫

Â\[−ǫ,ǫ]d
ĝ(y)ef̂(y)ndy,

and call

I1 =

∫

Â\[−ǫ,ǫ]d
ĝ(y)ef̂(y)ndy, I2 =

∫

[−ǫ,ǫ]d
ĝ(y)ef̂(y)ndy.

Since Â is compact, we can write
∫
Â |ĝ(ȳ)| dy ≤ maxÂ {|ĝ(y)|}

∫
Â dy ≤ K, and then

|I1| ≤
∫

Â\[−ǫ,ǫ]d

∣∣ĝ(y)e−αn
∣∣ dy ≤ e−αn

∫

Â
|ĝ(y)| dy ≤ e−αnK. (1.17)

Observe that ĝ ∈ C1(Â) and f̂ ∈ C3(Â). Then we can find positive constants C and M such
that, for all y in a neighbourhood of 0̄, we have

∣∣∣ĝ(y) − ĝ(0̄)
∣∣∣ ≤ C

d

∣∣∣
∑

i

yi

∣∣∣, and
∣∣∣f̂(y) +

1

2

∑

i

y2
i

∣∣∣ ≤ M

2d3

∣∣∣
∑

i,j,k

yiyjyk

∣∣∣.
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Then, for any y ∈ [−ǫ, ǫ]d and assuming that |ym| ≥ |yi| ∀i, we can write

∣∣∣ĝ(y) − ĝ(0̄)
∣∣∣ ≤ C

d

∣∣∣
∑

i

yi

∣∣∣ ≤ C

d

∑

i

∣∣∣yi

∣∣∣ ≤ Cǫ,

and
∣∣∣f̂(y) +

1

2

∑

i

y2
i

∣∣∣ ≤ M

2d3

∣∣∣
∑

i,j,k

yiyjyk

∣∣∣ ≤ M

2d3

∑

i,j,k

∣∣∣yiyjyk

∣∣∣ ≤ M

2
ǫy2

m ≤ Mǫ
1

2

∑

i

y2
i .

Now we obtain upper and lower bounds for I2. We use the following well known identity:
∫

R

e−t2dt =
√

π.

I2 ≤
∫

[−ǫ,ǫ]d
(ĝ(0̄) + Cǫ) e−

1
2
(1−Mǫ)n

P
i y2

i dy

=

(
1

2
(1 − Mǫ)n

)−d/2

(ĝ(0̄) + Cǫ)

∫
h
−

q
1
2
(1−Mǫ)n ǫ,

q
1
2
(1−Mǫ)n ǫ

id e−
P

j z2
j dz̄

∼
(

1

2
(1 − Mǫ)n

)−d/2

(ĝ(0̄) + Cǫ)πd/2

=

(
2π

(1 − Mǫ)n

)d/2

(ĝ(0̄) + Cǫ) , (1.18)

where we did the change of variables zi =
√

1
2(1 − Mǫ)n yi.

Similarly,

I2 ≥
∫

[−ǫ,ǫ]d
(ĝ(0̄) − Cǫ) e−

1
2
(1+Mǫ)n

P
i y2

i dy

=

(
1

2
(1 + Mǫ)n

)−d/2

(ĝ(0̄) − Cǫ)

∫
h
−

q
1
2
(1+Mǫ)n ǫ,

q
1
2
(1+Mǫ)n ǫ

id e−
P

j z2
j dz̄

∼
(

1

2
(1 + Mǫ)n

)−d/2

(ĝ(0̄) − Cǫ)πd/2

=

(
2π

(1 + Mǫ)n

)d/2

(ĝ(0̄) − Cǫ) , (1.19)

where we did the change of variables zi =
√

1
2(1 + Mǫ)n yi.

By putting together (1.17), (1.18) and (1.19), we get

I0 ≤ e−αnK + (1 + o(1))

(
2π

(1 − Mǫ)n

)d/2

(ĝ(0̄) + Cǫ) ,

and

I0 ≥ −e−αnK + (1 + o(1))

(
2π

(1 + Mǫ)n

)d/2

(ĝ(0̄) − Cǫ) .
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Thus, since ǫ was small enough but arbitrarily chosen, we can write

I0 ∼
(

2π

n

)d/2

ĝ(0̄),

and then

I ∼ 1√
|det H|

(
2π

n

)d/2

g(x0)ef(x0)n.

We need the following technical result.

Lemma 1.4.6. The following system of 6 equations in the variables di;s has rank 6:

∑

s

srdi;s =
5

6
, ∀i, r.

Moreover, after relabelling the variables as d1, . . . , d12, the solutions can be expressed by

d1, . . . , d6 are free,

dk = Lk(d1, . . . , d6, 1/6), k = 7, . . . , 12,

where Lk are linear functions with coefficients in Z.

Proof. Let us call s1 = (1, 4), s2 = (2, 3), s3 = (3, 2), s4 = (4, 1) the four possible 1-spectra.
We can easily found by hand the following solution: For each i ∈ Z3,

di
s3

= −2di
s4

+ di
s1

+ 1/6,

di
s2

= −2di
s1

+ di
s4

+ 1/6,

and the remaining variables are free.

Hereinafter, we relabel di
s as d1, . . . , d12 in the sense of Lemma 1.4.6. The bi

s are also
relabelled as b1, . . . , b12 accordingly. (Recall that bi

s was defined as
(5
s

)
/90.) For a point

d = (d1, . . . , d12) ∈ D1, the first six coordinates will be often denoted by d̃ = (d1, . . . , d6)
for simplicity.

Let ǫ > 0 be fixed but small enough. We consider the cube of side 2ǫ centred on b̃

Q̃1 = {(d1, . . . , d6) ∈ R
6 : dk ∈ [bk − ǫ, bk + ǫ], ∀k},

and the discrete set in Z
6

J̃1 = Q̃1 ∩
(

1

n
Z

6

)
.

Let us define their extension to higher dimension

Q1 = {(d1, . . . , d12) ∈ R
12 : (d1, . . . , d6) ∈ Q̃1,

dk = Lk(d1, . . . , d6, 1/6), ∀k = 7, . . . , 12},

where the Lk’s are as in Lemma 1.4.6, and

J1 = Q1 ∩
(

1

n
Z

12

)
.
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Note that b is an interior point of D1, and that for each k the function Lk(·, 1/6) is contin-
uous. Then, if ǫ is chosen small enough, we can ensure that for some δ > 0

∀d ∈ Q1, dk > δ and |dk − bk| < δ, k = 1, . . . , 12, (1.20)

and hence Q1 ⊂ D1. Moreover, since n is always divisible by 6, for each k the function
Lk(·, 1/6) maps points from 1

nZ
301 into 1

nZ, and so J1 ⊂ I1.

Recalling the descriptions of f1, g1 and h1 from (1.4), define for any (d1, . . . , d6) ∈ Q̃1

f̃1(d1, . . . , d6) = f1(d1, . . . , d12)
g̃1(d1, . . . , d6) = g1(d1, . . . , d12)

, where dk = Lk(d1, . . . , d6, 1/6), ∀k = 7, . . . , 12.

Lemma 1.4.7. The following statements hold:

• f1 has a unique maximum in D1 at b.

• f̃1 has a unique maximum in Q̃1 at b̃, with ef1(b) = ef̃1(b̃) = 90.

• The Hessian H̃1 of f̃1 at b̃ is definite negative, and det H̃1 = 315113.

• g̃1(b̃) = 23312 6= 0.

• Both f̃1 and g̃1 are of class C∞ in Q̃1.

Proof. The proof follows from Lemma 1.4.3 and direct calculations.

We compute the contribution to E(X) of the terms around b and get the following.

Lemma 1.4.8.

∑

d∈J1

q1(n,d)ef1(d)n ∼ (2πn)6/2

√
|det H̃1|

g̃1(b̃)enf̃1(b̃) =

√
2639

113
(2πn)390n

Proof. From (1.20), we see that for all d ∈ J1 ⊂ Q1 we must have dk > δ ∀k. Thus, from
their definition, all the mi,j

r,t are bounded away from 0, q1(n,d) ∼ g1(d) and we can write

∑

d∈J1

q1(n,d)ef1(d)n ∼
∑

J1

g1(d)enf1(d) =
∑

J̃1

g̃1(d̃)enf̃1(d̃). (1.21)

We note that both f̃1, g̃1 and its partial derivatives up to any fixed order are uniformly
bounded in the compact set Q̃1. By repeated application of the Euler-Maclaurin summation
formula (see [1], p. 806), we have that asymptotically as n grows large

∑

J̃1

g̃1(d̃)enf̃1(d̃) ∼ n6

∫

Q̃1

g̃1(x̃)enf̃1(x̃)dx̃. (1.22)

Observe from Lemma 1.4.7 that all the conditions required in Lemma 1.4.5 are satisfied.
In view of this, we obtain

∫

Q̃1

g̃1(x̃)enf̃1(x̃)dx̃ ∼ 1√
|det H̃1|

(
2π

n

)6/2

g̃1(b̃)enf̃1(b̃). (1.23)

The result follows from (1.21), (1.22), (1.23) and Lemma 1.4.7.
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Now we deal with the remaining terms of the sum.

Lemma 1.4.9. There exists some positive real α < ef1(b) such that
∑

I1\J1

q1(n,d)ef1(d)n = o (αn) .

Proof. Let B be the topological closure of D1 \ Q1. We recall from Lemma 1.4.7 that f1

has a unique maximum in D1 at point b /∈ B. Then, since B is a compact set and f1 is
continuous, there must be some real β < f1(b) such that f1(x) ≤ β ∀x ∈ B. Now we observe
that all terms in the sum

∑
I1\J1

q1(n,d)ef1(d)n can be uniformly bounded by Cn6eβn, for

some fixed constant C. Note furthermore that there are at most (n+1)12 terms in the sum.
Hence, the result holds by taking α = (eβ + ef1(b))/2.

From Lemmata 1.4.8 and 1.4.9, we obtain

∑

I1

q1(d)ef1(d)n ∼
√

2639

113
(2πn)390n.

From this and Lemma 1.4.1, we conclude the following:

Theorem 1.4.10.

E(X) ∼
√

223653

113

1

(2πn)2

(
25

24

)n

.

1.5 Asymptotic Value of the Second Moment

By analogy to Section 1.4, we denote the tuple (di,j
s )i,j∈Z3,s∈S2 by d. Let us consider the

function

F̂ (d) =



∏

i,j,s

((5
s

)

di,j
s

)di,j
s




∏

i,j,r,t

(
mi,j

r,t

) 1
2
mi,j

r,t


 ,

defined in D2, where mi,j
r,t denotes

∑
s sr,td

i,j
s as before. Throughout this chapter we observe

the conventions that 00 = 1 and 0 log 0 = 0.
We define

f2(d) = log F̂ (d) =
∑

i,j,s

di,j
s

(
log

(
5

s

)
− log di,j

s

)
+
∑

i,j,r,t

1

2
mi,j

r,t log mi,j
r,t,

g2(d) =

∏
i,j,r,t

(
mi,j

r,t

)1/4

∏
i,j,s(d

i,j
s )1/2

, h2(n) = 2−1/2(2πn)−305/2 5−5n/2. (1.24)

Lemma 1.5.1. The second moment satisfies

E(X2) = h2(n)
∑

d∈I2

q2(n,d)ef2(d)n, (1.25)

where, as n → ∞ and uniformly over all d, q2(n,d) = O(n162) and q2(n,d) ∼ g2(d) provided
all di,j

s and mi,j
r,t are bounded away from 0.
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Proof. Apply Stirling’s formula to (1.12), we obtain

E(X2) =
25n/2(5n/2)!n!

(5n)!

∑

d∈I2







∏

i,j,s

(
5
s

)di,j
s n

(di,j
s n)!





∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2








∼ √
πn 5−5n/2

∑

d∈I2





(n/e)n

(n/e)5n/2



∏

i,j,s

(
5
s

)di,j
s n

(di,j
s n)!





∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2








= h2(n)
∑

d∈I2





(2πn)153(n/e)n

(n/e)5n/2



∏

i,j,s

(5
s

)di,j
s n

(di,j
s n)!





∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2






 . (1.26)

Recall from the proof of Lemma 1.4.1 that Stirling’s formula implies k! =
√

2πη(k)(k/e)k

for all k ≥ 0, where η(k) > 0 and η(k) ∼ k as k → ∞. So we have



∏

i,j,s

(5
s

)di,j
s n

(di,j
s n)!





∏

i,j,r,t

(
(mi,j

r,tn)!
)1/2




=



∏

i,j,s

(5
s

)di,j
s n

√
2πη(di,j

s n)
(

di,j
s n
e

)di,j
s n






∏

i,j,r,t



√

2πη(mi,j
r,tn)

(
mi,j

r,tn

e

)mi,j
r,tn





1/2

=
(n/e)5n/2

(2πn)153(n/e)n

∏
i,j,r,t(η(nmi,j

r,t)
1/4n−1/4)

∏
i,j,s(η(ndi,j

s )1/2n−1/2)



∏

i,j,s

((5
s

)

di,j
s

)di,j
s n




∏

i,j,r,t

(
mi,j

r,t

)mi,j
r,tn/2




=
(n/e)5n/2

(2πn)153(n/e)n
q2(n,d)ef2(d)n,

for a function q2 of the type described in the statement of the lemma. Combining this
with (1.26) yields the lemma.

We consider the maximum base of the exponential part of the terms in (1.25), taken
over all points in the polytope D2:

M2 = max
d∈D2

{
5−5/2ef2(d)

}
.

This is well defined, due to the compactness of the domain and the continuity of the ex-
pression. Note that the exponential behaviour of the second moment is governed by M2,
since the number of terms in the sum in (1.25) is polynomial with respect to n.

In the next subsection we determine the value of M2 under the Maximum Hypothesis.
In Subsection 1.5.2, based on that fact and using a Laplace-type integration argument, we
compute the sub-exponential factors in the asymptotic expression of the second moment.

1.5.1 Computing M2

We will maximise F̂ in two phases. In the first one, we maximise F̂ assuming the matching
variables mi,j

r,t are fixed constants. These constants must be compatible with the polytope
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D2 over which F̂ is defined, so we define M to be the set of vectors m of 2 × 2 matrices
(mi,j)i,j∈Z3 such that (1.10) holds for some d ∈ D2.

We often consider variables di,j
s and mi,j

r,t for fixed i, j ∈ Z3. To simplify notation, we
delete the indices i and j when they are fixed throughout the formula. For any 0 < c ∈ R,
define

D′(c) = {(ds)s∈S ∈ R
36 : ds ≥ 0 ∀s,

∑

s

ds = c},

and let M′(c) be the set of 2×2 matrices m such that (1.10) holds for some (ds)s∈S ∈ D′(c)
(after deleting superscripts i and j). We will use d to denote points in D2 and also points
in D′(c). The meaning will be clear from the context.

In order to give an alternative characterisation of the matching variables mi,j
r,t, we

consider the following equations for all ordered pairs (i, j), i, j ∈ Z3, and all r, t ∈ {−1, 1}:

mi,j
r,t ≥ 0,

mi,j
r,t + mi,j

r,−t ≤ 4(mi,j
−r,t + mi,j

−r,−t),

mi,j
r,t + mi,j

−r,t ≤ 4(mi,j
r,−t + mi,j

−r,−t).

(1.27)

That is, for all such i and j, the entries of mi,j are non-negative, neither row sum is greater
than 4 times the other, and neither column sum is greater than 4 times the other.

Lemma 1.5.2. Let c > 0 ∈ R. The set M′(c) can be alternatively described as the polytope
containing all matrices m such that

∑

r,t

mr,t = 5c, (1.28)

and the constraints in (1.27) hold. Similarly, M is the polytope containing all vectors m of
matrices mi,j such that ∑

i,r,t

mi,j
r,t = 5/3,

∑

j,r,t

mi,j
r,t = 5/3, (1.29)

and the constraints in (1.8), (1.27) hold.

Proof. Let A be the set of matrices m satisfying (1.27) and (1.28). We first prove that
M′(c) ⊆ A. Let m be a matrix in M′(c). Then, for some d ∈ D′(c), we have

∑

r,t

mr,t =
∑

r,t

∑

s

sr,tds =
∑

s

∑

r,t

sr,tds =
∑

s

5ds = 5c,

and (1.28) is satisfied. Moreover, we observe that for any spectrum s, we have

sr,t ≥ 0, sr,t + sr,−t ≤ 4(s−r,t + s−r,−t) and sr,t + s−r,t ≤ 4(sr,−t + s−r,−t).

Then m must satisfy the constraints in (1.27), since it is a positive linear combination of
spectra, and m ∈ A.

Now we prove that A ⊆ M′(c). We have that A is a polytope and so it is the convex
hull of its vertices:

[
c 0
0 4c

]
,

[
0 c
c 3c

]
,

[
0 c
4c 0

]
,

[
c 0
3c c

]
,
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[
0 4c
c 0

]
,

[
c 3c
0 c

]
,

[
4c 0
0 c

]
,

[
3c c
c 0

]
.

Each of these vertices v has the shape of some spectrum s times c. By making ds = c and
ds′ = 0 for s′ 6= s, we show that v ∈ M′(c).

Moreover, we observe that M′(c) is a convex set, since it is the image of D′(c) under
a linear mapping. Then M′(c) must contain the convex hull of the vertices of A, and thus
contains A.

The second statement in the lemma follows from the previous fact and from the
definition of M.

For any fixed m ∈ M, let F̃ (m) be the maximum of F̂ restricted to d ∈ D2 such
that (1.10) holds. To express F̃ (m) in terms of m, we will use the matrix function

Φ

[
x y
z w

]
= (x+y+z+w)5−(x+y)5−(x+z)5−(y+w)5−(z+w)5+x5+y5+z5+w5 (1.30)

and, for each of the nine possible pairs (i, j), i, j ∈ Z3, consider the 4 × 4 system

∂ Φµi,j

∂µi,j
r,t

µi,j
r,t = mi,j

r,t, r, t = −1, 1, (1.31)

in the matrix variables µi,j.

Lemma 1.5.3. For any m in the interior of M, each of the nine systems in (1.31) has a
unique positive solution. Moreover, in terms of the solutions of these systems,

F̃ (m) =
∏

i,j,r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

,

and the equation remains valid for m on the boundary of M if the expression on the right
is extended by continuity.

Proof. We assume that m is a fixed vector in the interior of M. In order to compute
F̃ (m), it is sufficient to maximise the function F̂ (d) for non-negative di,j

s subject to (1.10),

since the other constraints are trivially satisfied. We observe that the factor
∏(

mi,j
r,t

) 1
2
mi,j

r,t

is constant, and that variables di,j
s with different pairs of indices (i, j) appear in different

factors of F̂ and also in different constraints. Thus, it is sufficient to maximise, separately
for each i, j ∈ Z3, the function

Gi,j =
∏

s∈S

((5
s

)

di,j
s

)di,j
s

, (1.32)

over non-negative di,j
s subject to the matrix constraint (1.10). For the remaining of this

proof, we fix i and j and thus omit superscripts as discussed above.
Let R be the polytope containing all d = (ds)s∈S such that ds is non-negative for all

s ∈ S, and satisfying (1.10). The fact that m is in the interior of M implies that R contains
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points with all the ds strictly positive. In fact, the interior of R consists of all those points
in R with this property.

For any point d0 on the boundary of R we select a segment joining d0 with some
interior point. We observe that, in moving along the segment from the interior of R towards
d0, the directional derivative of log G contains the sum of some bounded terms plus some
terms of the type log ds with positive coefficient, which become large as we approach d0.
Hence, G does not maximise at the boundary of R.

We temporarily relax the constraint (1.10) and observe that the Hessian of log G is
negative definite for any tuple of positive ds. Hence log G is strictly concave in that domain
and also in the interior of R, since linear constraints do not affect concavity. Thus, the
maximum of G is unique and occurs in the only stationary point of log G in the interior of
R.

We are now in a good position to apply the Lagrange multipliers method to look for
stationary points of log G. We consider

log G =
∑

s

ds

(
log

(
5

s

)
− log ds

)
, (1.33)

for positive ds subject to the four constraints:

Lr,t =
∑

s

sr,tds − mr,t = 0, r, t ∈ {−1, 1}. (1.34)

For each one of the four constraints Lr,t in (1.34) a Lagrange multiplier λr,t is introduced.
Then we obtain the following equations:

log

(
5

s

)
− 1 − log ds =

∑

r,t

λr,tsr,t, ∀s ∈ S (1.35)

which, together with the constraints (1.34) have a unique solution when d is the only
stationary point of log G. Let us define µr,t = exp(−λr,t−1/5). After exponentiating (1.35),
and noting that the sum of the sr,t is 5, we have

ds =

(
5

s

)∏

r,t

(µr,t)
sr,t , ∀s ∈ S, (1.36)

and combining this with (1.34) gives

mr,t =
∑

s

(
sr,t

(
5

s

)∏

r,t

(µr,t)
sr,t

)
, r, t ∈ {−1, 1}. (1.37)

By construction, this system has a unique positive solution, and (1.36) gives the maximiser
of G in terms of this solution. We observe that (1.37) is exactly the same system as the one
in (1.31).

Now the maximum of G can be obtained by plugging (1.36) into (1.32), resulting in

max
d∈R

G(d) =
∏

r,t

(
1

µr,t

)mr,t

, (1.38)

and the required expression for F̃ (m) follows by elementary computations.
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Let us now define for any d ∈ D′(1/9) the auxiliary function

Ĝ(d) =



∏

s

((5
s

)

ds

)ds


(
∏

r,t

(mr,t)
1
2
mr,t

)
, (1.39)

where mr,t =
∑

s sr,t ds. (Recall that 00 = 1.)

Lemma 1.5.4. The function Ĝ takes its maximum on D′(1/9) in the interior of D′(1/9).

Proof. Notice that the boundary of D′(1/9) comprises the points where for at least one s,
ds = 0 and

∑
s ds = 1/9. Observe that it is sufficient to prove the statement for log Ĝ. The

continuity of log Ĝ at the boundary points of D′(1/9) follows from the fact that limx→0 xx =
1. After proving log Ĝ is continuous at the boundary of D′(1/9), take any d on the boundary.
Here ds0 = 0 for some s0. Then ds1 > 0 for some s1 since the sum of entries of d is 1/9. At
any point d such that ds > 0,

∂ log Ĝ

∂ds
= log

(
5

s

)
− 1 − log ds +

5

2
+
∑

r,t

1

2
sr,t log mr,t. (1.40)

Note that if ds > 0 then all the mr,t corresponding to a non-zero sr,t are also necessarily non-
zero. As a first case, suppose none of the mr,t is zero at d. Then at a point d + ǫEs0 − ǫEs1

we have ∂ log Ĝ
∂ds0

− ∂ log Ĝ
∂ds1

→ ∞ as ǫ → 0, where Es denotes the vector with 1 in its s coordinate

and zero elsewhere. (Since the first partial goes to ∞ and the second is bounded.) Hence
there is no maximum at d.

Next suppose precisely one mr,t is zero at d. Fix such values of r and t. Pick an s
such that sr,t = 1. Then ds = 0 at d. So rename s as s0 and use the above argument,

choosing again any s1 with ds1 > 0. Now the unbounded terms in ∂ log Ĝ
∂ds0

are − log ds0 +
1
2(s0)r,t log mr,t, and we have mr,t ≥ ds0 because (s0)r,t = 1. It follows that there is no
maximum at d.

For two different mr,t equal to zero at d, pick the spectrum s0 to have 1 in one of the
corresponding positions, and zero in the other. Then the same argument as above gives the
result.

So no local maximum occurs on the boundary.

Lemma 1.5.5. The function Ĝ has a unique maximum in D′(1/9) at the point where all
the ds are equal to

(5
s

)
/8100. The function value at the maximum is (55/225/24)1/9.

Proof. We note that (1.10) maps the interior of D′(1/9) into the interior of M′(1/9). As
a result and in view of Lemma 1.5.4, the maximum of Ĝ, under mapping (1.10), does not
occur on the boundary of M′(1/9).

Assume that m is a fixed matrix in the interior of M′(1/9). We first maximise Ĝ
in D′(1/9) subject to the matrix constraint (1.10). Denote this maximum by G̃(m). By
arguing as in the proof of Lemma 1.5.3, we have

G̃(m) =
∏

r,t

(
(mr,t)

1
2

µr,t

)mr,t

,
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where the µr,t are the unique positive solution of the system in (1.31) after deleting super-
scripts i and j. Moreover, the maximiser is given in terms of this solution by (1.36).

We now maximise G̃ in the interior of M′(1/9), by applying the Lagrange multiplier
method to

log G̃(m) =
∑

r,t

mr,t

(
1

2
log mr,t − log µr,t

)
,

subject to ∑

r,t

mr,t = 5/9.

We need some preliminary computations. By adding the four equations in (1.31) and taking
into account (1.30), we have

5Φ(µ) =
∑

r,t

mr,t.

In view of this, we have that for all r, t ∈ {−1, 1}
∑

r′,t′∈{−1,1}
mr′,t′

∂ log µr′,t′

∂mr,t
=

∑

r′,t′∈{−1,1}

mr′,t′

µr′,t′

∂µr′,t′

∂mr,t

=
∑

r′,t′∈{−1,1}

∂Φ(µ)

∂µr′,t′

∂µr′,t′

∂mr,t
=

∂Φ(µ)

∂mr,t
=

1

5
. (1.41)

This allows us to compute

∂ log G̃(m)

∂mr,t
=

1

2
log mr,t +

1

2
− log µr,t −

∑

r′,t′

mr′,t′
∂ log µr′,t′

∂mr,t

=
1

2
log mr,t − log µr,t +

3

10
, (1.42)

and obtain the equations

1

2
log mr,t − log µr,t +

3

10
= λ, ∀r, t ∈ {−1, 1}, (1.43)

where λ is the Lagrange multiplier introduced by the single constraint. After exponentiat-
ing (1.43), and defining λ′ = exp(λ − 3/10), we can write

√
mr,t

µr,t
= λ′, ∀r, t ∈ {−1, 1}. (1.44)

We relabel the entries of the matrices m and µ as

[
m1 m2

m3 m4

]
,

[
µ1 µ2

µ3 µ4

]
.

Combining (1.44) and (1.31), we get

µi
∂Φ

∂µj
− µj

∂Φ

∂µi
= 0, ∀i, j ∈ {1, . . . , 4}.
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We can factorise the following equation:

µ1
∂Φ

∂µ4
− µ4

∂Φ

∂µ1
= 0,

and get
(µ1 − µ4) P = 0,

where

P = 120 µ1 µ2 µ3 µ4 + 20 µ1
3 µ2 + 20 µ1

3 µ3 + 25 µ1
3 µ4 + 30 µ1

2 µ2
2

+30 µ1
2 µ3

2 + 35 µ1
2 µ4

2 + 5 µ4
4 + 20 µ1 µ2

3 + 20 µ1 µ3
3

+25 µ1 µ4
3 + 5 µ1

4 + 60 µ1
2 µ2 µ3 + 80 µ1

2 µ2 µ4 + 80 µ1
2 µ3 µ4

+60 µ2
2 µ3 µ4 + 60 µ1 µ2

2 µ3 + 90 µ1 µ2
2 µ4 + 60 µ1 µ2 µ3

2

+80 µ1 µ2 µ4
2 + 90 µ1 µ3

2 µ4 + 80 µ1 µ3 µ4
2 + 60 µ2 µ3

2 µ4

+60 µ2 µ3 µ4
2 + 20 µ2

3 µ3 + 20 µ2
3 µ4 + 30 µ2

2 µ3
2 + 30 µ2

2 µ4
2

+20 µ2 µ3
3 + 20 µ2 µ4

3 + 20 µ3
3 µ4 + 30 µ3

2 µ4
2 + 20 µ3 µ4

3,

which is strictly positive, so µ1 = µ4. Similarly, we can factorise

µ2
∂Φ

∂µ3
− µ3

∂Φ

∂µ2
= 0,

and get
(µ2 − µ3) Q = 0,

where

Q = 120 µ1 µ2 µ3 µ4 + 20 µ1
3 µ2 + 20 µ1

3 µ3 + 20 µ1
3 µ4 + 30 µ1

2 µ2
2

+30 µ1
2 µ3

2 + 30 µ1
2 µ4

2 + 5 µ3
4 + 5 µ2

4 + 20 µ1 µ2
3 + 20 µ1 µ3

3

+20 µ1 µ4
3 + 90 µ1

2 µ2 µ3 + 60 µ1
2 µ2 µ4 + 60 µ1

2 µ3 µ4

+80 µ2
2 µ3 µ4 + 80 µ1 µ2

2 µ3 + 60 µ1 µ2
2 µ4 + 80 µ1 µ2 µ3

2

+60 µ1 µ2 µ4
2 + 60 µ1 µ3

2 µ4 + 60 µ1 µ3 µ4
2 + 80 µ2 µ3

2 µ4

+90 µ2 µ3 µ4
2 + 25 µ2

3 µ3 + 20 µ2
3 µ4 + 35 µ2

2 µ3
2 + 30 µ2

2 µ4
2

+25 µ2 µ3
3 + 20 µ2 µ4

3 + 20 µ3
3 µ4 + 30 µ3

2 µ4
2 + 20 µ3 µ4

3,

which is also strictly positive, so µ2 = µ3. Finally, we substitute µ4 by µ1 and µ3 by µ2 in

µ1
∂Φ

∂µ2
− µ2

∂Φ

∂µ1
= 0,

and then factorise it to obtain
(µ1 − µ2) R = 0,

where
R = 70 µ1

4 + 275 µ1
3 µ2 + 415 µ1

2 µ2
2 + 275 µ1 µ2

3 + 70 µ2
4,

which is again strictly positive, so µ1 = µ2. Hence, all the µi are equal (and therefore all
the mi are also equal).
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Since the mi are equal and sum to 5/9, each mi must be equal to 5/36. Substituting
this value into any of the equations in (1.31), we deduce that µi = 2−2/53−4/55−2/5. This
shows that the Lagrange multiplier problem has a unique solution. This solution must
correspond to the unique stationary point of G̃ in the interior of M′(1/9), which must then
be a maximum.

Finally, (1.36) gives the maximiser of Ĝ in D′(1/9) when the mr,t are fixed to be
equal and thus the µr,t are also equal. The maximum value of Ĝ is computed from its
definition.

Recall the definition of the nine overlap variables from Section 1.3.2. We observe
that (1.11) maps D2 into a polytope of dimension 4. The vectors (ni,j) in this polytope can
be expressed in terms of four variables by

n0,2 = 1/3 − n0,0 − n0,1, n1,2 = 1/3 − n1,0 − n1,1, n2,0 = 1/3 − n0,0 − n1,0,

n2,1 = 1/3 − n0,1 − n1,1, n2,2 = n0,0 + n0,1 + n1,0 + n1,1 − 1/3, (1.45)

where the variables n0,0, n0,1, n1,0 and n1,0 take arbitrary non-negative real values such that

n0,0 + n0,1 ≤ 1

3
, n1,0 + n1,1 ≤ 1

3
, n0,0 + n1,0 ≤ 1

3
,

n0,1 + n1,1 ≤ 1

3
, n0,0 + n0,1 + n1,0 + n1,1 ≥ 1

3
. (1.46)

We are now in a good position to define the function F used in the statement of the
Maximum Hypothesis. The domain of F is the set N of all non-negative real vectors
n = (n0,0, n0,1, n1,0, n1,1) satisfying (1.46). For each n in N , we compute the nine overlap
variables from (1.45) and define F (n) to be the maximum of F̂ (d) over D2 subject to the
constraints in (1.11). This definition of F is repeated in Section 1.7, which also contains an
alternative equivalent definition (see also Figure 1.1 in Section 1.7).

Let b = (bi,j
s )s∈S,i,j∈Z3 be the point in D2 where bi,j

s =
(5

s)
8100 for all i, j, s. Now we

return to our main function f2, which was defined in (1.24).

Lemma 1.5.6. Under the Maximum Hypothesis, the function f2 has a unique maximiser
in D2 at b. Moreover, M2 := maxd∈D2

{
5−5/2ef2(d)

}
= 25/24.

Proof. Recall that f2 = log F̂ . The Maximum Hypothesis implies that any maximiser of
F̂ on D2 must satisfy

∑
s∈S di,j

s = 1/9, for all i, j ∈ Z3. Let us momentarily relax the
constraints in (1.8), and maximise each factor

Ĝi,j(d) =



∏

s

((5
s

)

di,j
s

)di,j
s


(
∏

r,t

(mi,j
r,t)

1
2
mi,j

r,t

)
,

separately in D′(1/9). In view of Lemma 1.5.5, b is the unique maximiser and the maximum
value of each factor is (55/225/24)1/9 . We observe that the constraints in (1.8) are also
satisfied by b. Therefore b is the unique maximiser of F̂ and the maximum function value

is
(
(55/225/24)1/9

)9
= 55/225/24.
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1.5.2 Subexponential Factors of E(X2)

Here we complete the computation of the asymptotic expression of E(X2) under the Max-
imum Hypothesis by using a standard Laplace-type integration technique.

First we need the following result:

Lemma 1.5.7. The following system of 24 equations in the variables di,j
s has rank 23:

∑

s

st
1d

i,j
s −

∑

s

s−t
−1d

i+1,j+t
s = 0 ∀i, j, t,

∑

j,s

di,j
s = 1/3 ∀i,

∑

i,s

di,j
s = 1/3 ∀j.

Moreover, after relabelling the variables as d1, . . . , d324, the solutions can be expressed by

d1, . . . , d301 free,

dk = Lk(d1, . . . , d301, 1/6), k = 302, . . . , 324,

where Lk are linear functions with coefficients in Z.

Proof. Let us call

s1 =

[
0 1
1 3

]
, s2 =

[
0 1
2 2

]
, s3 =

[
0 1
3 1

]
, s4 =

[
0 1
4 0

]
,

s5 =

[
0 2
1 2

]
, s6 =

[
0 2
2 1

]
, s7 =

[
0 2
3 0

]
, s8 =

[
0 3
1 1

]
,

s9 =

[
0 3
2 0

]
, s10 =

[
0 4
1 0

]
, s11 =

[
1 0
0 4

]
, s12 =

[
1 0
1 3

]
,

s13 =

[
1 0
2 2

]
, s14 =

[
1 0
3 1

]
, s15 =

[
1 1
0 3

]
, s16 =

[
1 1
1 2

]
,

s17 =

[
1 1
2 1

]
, s18 =

[
1 1
3 0

]
, s19 =

[
1 2
0 2

]
, s20 =

[
1 2
1 1

]
,

s21 =

[
1 2
2 0

]
, s22 =

[
1 3
0 1

]
, s23 =

[
1 3
1 0

]
, s24 =

[
2 0
0 3

]
,

s25 =

[
2 0
1 2

]
, s26 =

[
2 0
2 1

]
, s27 =

[
2 1
0 2

]
, s28 =

[
2 1
1 1

]
,

s29 =

[
2 1
2 0

]
, s30 =

[
2 2
0 1

]
, s31 =

[
2 2
1 0

]
, s32 =

[
3 0
0 2

]
,

s33 =

[
3 0
1 1

]
, s34 =

[
3 1
0 1

]
, s35 =

[
3 1
1 0

]
, s36 =

[
4 0
0 1

]
.

Then we have the following solution:

d2,2
s13 = d1,1

s34 − d2,2
s14 − d2,2

s11 − d2,2
s19 − d2,2

s20 − d2,2
s21 + d1,1

s36 − 2d2,2
s26 + d1,1

s33 − d2,2
s12 − 3d2,2

s32 + d1,1
s28 −

4d2,2
s36 −d2,2

s22 −2d2,2
s27 −2d2,2

s25 +2d1,1
s32 −2d2,2

s28 −2d2,2
s29 −2d2,2

s30 −2d2,2
s31 +3d1,1

s1 +2d1,1
s2 +d1,1

s3 +2d1,1
s5 +

d1,1
s6 − 3d2,2

s33 − 3d2,2
s34 − 3d2,2

s35 − d2,2
s15 − d2,2

s16 − d2,2
s17 − d2,2

s18 + 4d1,1
s11 + 3d1,1

s12 + 2d1,1
s13 + d1,1

s14 + 3d1,1
s15 +

2d1,1
s16 + d1,1

s17 − d2,2
s23 + 2d1,1

s19 + d1,1
s20 + d1,1

s30 + d1,1
s22 + 3d1,1

s24 + 2d1,1
s25 + d1,1

s26 + 2d1,1
s27 − 2d2,2

s24 + d1,1
s8 ,

d0,1
s26 = −d0,1

s30 − d0,1
s28 − 2d0,1

s25 − 3d0,1
s12 − 2d0,1

s19 − d0,1
s17 − d0,1

s20 − 2d0,1
s13 − 3d0,1

s24 + d1,2
s11 + d1,2

s12 +
d1,2

s13 + d1,2
s14 + d1,2

s16 + d1,2
s17 + d1,2

s18 − 2d0,1
s27 + d1,2

s19 + d1,2
s20 − d0,1

s22 + d1,2
s21 + d1,2

s22 + d1,2
s23 + 3d1,2

s32 + 3d1,2
s33 −
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2d0,1
s16 −d0,1

s34 +d1,2
s15 +4d1,2

s36 −3d0,1
s15 +2d1,2

s27 +2d1,2
s28 +2d1,2

s29 +2d1,2
s30 +2d1,2

s31 +3d1,2
s34 +3d1,2

s35 +2d1,2
s24 +

2d1,2
s25 + 2d1,2

s26 − 3d0,1
s1 − 2d0,1

s2 − d0,1
s3 − 2d0,1

s5 − d0,1
s14 − d0,1

s6 − d0,1
s8 − 4d0,1

s11 − 2d0,1
s32 − d0,1

s33 − d0,1
s36 ,

d2,0
s29 = −3d2,0

s32−3d2,0
s33−2d1,1

s29−d1,1
s33−d1,1

s35−d2,0
s12−d2,0

s13−d2,0
s14−d1,1

s28 +4d1,2
s11 +3d1,2

s12 +2d1,2
s13 +

d1,2
s14 + 2d1,2

s16 +d1,2
s17 + 2d1,2

s19 +d1,2
s20 +d1,2

s22 + 2d1,2
s32 +d1,2

s33 +d2,0
s1 +d2,0

s2 +d2,0
s3 +d2,0

s4 + 2d2,0
s5 + 2d2,0

s6 +
2d2,0

s7 + 3d1,2
s1 + 2d1,2

s2 + d1,2
s3 + 2d1,2

s5 + d1,2
s6 − 2d2,0

s24 − 2d2,0
s25 − 2d2,0

s26 − d1,1
s1 − 2d1,1

s2 − 3d1,1
s3 − 4d1,1

s4 −
d1,1

s5 −2d1,1
s6 +d2,0

s19 +d2,0
s20 +d2,0

s21 +2d2,0
s22 +2d2,0

s23 −d2,0
s27 +d1,2

s8 +3d1,2
s15 −2d2,0

s34 −d1,1
s12 −2d1,1

s13 −3d1,1
s14 −

d1,1
s16 −2d1,1

s17 −d1,1
s31 −3d1,1

s18 −4d2,0
s36 +d1,2

s36 −d1,1
s20 −2d1,1

s21 −d1,1
s23 −d1,1

s25 −2d1,1
s26 −d2,0

s11 −3d1,1
s7 −d1,1

s8 −
2d1,1

s9 −2d2,0
s35 −d2,0

s28 +2d1,2
s27 +d1,2

s28 +d1,2
s30 +d1,2

s34 +3d2,0
s8 +3d2,0

s9 +4d2,0
s10 +3d1,2

s24 +2d1,2
s25 +d1,2

s26 −d1,1
s10 ,

d0,2
s33 = d1,1

s34 + d1,1
s29 − 2d0,2

s9 − d0,2
s10 − 4d0,2

s4 + d1,1
s35 + d1,1

s28 − 2d0,2
s21 − d0,2

s1 − 2d0,2
s2 − 3d0,2

s3 −
d0,2

s25 −2d0,2
s26 +d1,1

s1 +d1,1
s2 +d1,1

s3 +d1,1
s4 + 2d1,1

s5 + 2d1,1
s6 −d0,2

s31 −d0,2
s35 −d0,2

s12 −2d0,2
s13 −3d0,2

s14 −d0,2
s16 −

2d0,2
s17 − d0,2

s20 − d0,2
s23 + d1,1

s15 + d1,1
s16 + d1,1

s17 + 2d1,1
s31 + d1,1

s18 + 2d1,1
s19 + 2d1,1

s20 + 2d1,1
s30 + 2d1,1

s21 + 3d1,1
s22 +

3d1,1
s23 + d1,1

s27 − 3d0,2
s7 − d0,2

s5 − 2d0,2
s6 − d0,2

s8 + 2d1,1
s7 + 3d1,1

s8 + 3d1,1
s9 − 3d0,2

s18 − d0,2
s28 + 4d1,1

s10 − 2d0,2
s29 ,

d1,0
s15 = d1,0

s36 −2d1,0
s3 −2d1,0

s11 +d1,1
s34 −2d1,0

s14 +d1,0
s10 +d1,1

s36 +d1,1
s35 −d1,0

s25 −d1,0
s17 −d1,0

s18 −2d1,2
s11 −

2d1,2
s12 − 2d1,2

s13 − 2d1,2
s14 − d1,2

s16 − d1,2
s17 − d1,2

s18 + d1,2
s22 + d1,2

s23 − d1,0
s5 − d1,0

s26 − 2d1,0
s13 − 2d1,0

s12 − 2d1,2
s1 −

2d1,2
s2 − 2d1,2

s3 − 2d1,2
s4 − d1,2

s5 − d1,2
s6 − 2d1,1

s1 − 2d1,1
s2 − 2d1,1

s3 − 2d1,1
s4 − d1,1

s5 − d1,1
s6 − d1,0

s7 − d1,0
s16 +

d1,0
s22 + d1,0

s23 + d1,0
s31 + d1,0

s34 + d1,0
s35 + d1,0

s30 − 2d1,0
s2 − d1,2

s7 + d1,2
s10 − d1,2

s15 − 2d1,1
s11 − 2d1,0

s1 − 2d1,1
s12 −

2d1,1
s13 − 2d1,1

s14 − d1,1
s15 − d1,1

s16 − d1,1
s17 + d1,1

s31 − d1,1
s18 + d1,2

s36 + d1,1
s30 + d1,1

s22 + d1,1
s23 − d1,1

s24 − d1,0
s6 − d1,1

s25 −
d1,1

s26 − d1,1
s7 − d1,0

s24 + d1,2
s30 + d1,2

s31 + d1,2
s34 + 1/6 + d1,2

s35 − d1,2
s24 − 2d1,0

s4 − d1,2
s25 − d1,2

s26 + d1,1
s10 ,

d1,0
s28 = −4d1,0

s36 + 5d1,0
s3 − d1,0

s33 + 2d1,0
s11 − 3d1,1

s34 + 5d1,0
s14 − 3d1,0

s10 − 3d1,1
s36 − 3d1,1

s35 + d1,0
s25 +

2d1,0
s17 + 3d1,0

s18 − 2d1,0
s19 − d1,0

s20 + 6d1,2
s11 + 6d1,2

s12 + 6d1,2
s13 + 6d1,2

s14 + 2d2,1
s31 + 3d2,1

s32 + 3d2,1
s33 + 3d2,1

s34 +
3d2,1

s35 + 4d2,1
s36 + 3d1,2

s16 + 3d1,2
s17 + 3d1,2

s18 − 3d1,2
s22 − 3d1,2

s23 + d2,1
s12 + d2,1

s14 + d2,1
s15 + d2,1

s16 + d2,1
s17 − d1,0

s8 +
d1,0

s5 + 2d1,0
s26 + 4d1,0

s13 − 2d1,0
s32 + 3d1,0

s12 + 6d1,2
s1 + 6d1,2

s2 + 6d1,2
s3 + 6d1,2

s4 + 3d1,2
s5 + 3d1,2

s6 − 2d1,0
s27 +

6d1,1
s1 +6d1,1

s2 +6d1,1
s3 +6d1,1

s4 +3d1,1
s5 +3d1,1

s6 +3d1,0
s7 +d1,0

s16 +d2,1
s11 −4d1,0

s22 −3d1,0
s23 −3d1,0

s31 −4d1,0
s34 −

3d1,0
s35 − 4d1,0

s30 + 4d1,0
s2 + 3d1,2

s7 − 3d1,2
s10 + 3d1,2

s15 + 6d1,1
s11 + 3d1,0

s1 + 6d1,1
s12 + 6d1,1

s13 + 6d1,1
s14 + 3d1,1

s15 +
3d1,1

s16 + 3d1,1
s17 − 3d1,1

s31 + 3d1,1
s18 + 2d2,1

s25 + 2d2,1
s26 + 2d2,1

s27 + 2d2,1
s28 + 2d2,1

s30 + d2,1
s13 − 3d1,2

s36 − 3d1,1
s30 −

3d1,1
s22 − 3d1,1

s23 + 3d1,1
s24 + 2d1,0

s6 + 3d1,1
s25 + 3d1,1

s26 + 3d1,1
s7 − 3d1,2

s30 − 3d1,2
s31 − 3d1,2

s34 + d2,1
s18 + d2,1

s19 +
d2,1

s20 + d2,1
s21 + d2,1

s22 + d2,1
s23 + 2d2,1

s24 − 1/2 − 3d1,2
s35 + 3d1,2

s24 + 6d1,0
s4 + 3d1,2

s25 + 3d1,2
s26 − 3d1,1

s10 + 2d2,1
s29 ,

d1,0
s29 = 2d1,0

s36−4d1,0
s3 −d1,0

s11+d1,1
s34−d1,1

s29−4d1,0
s14+d1,0

s10+d1,1
s36−d1,1

s33+d1,1
s35−d1,0

s25−2d1,0
s17−3d1,0

s18+
d1,0

s19 −d1,1
s28 −5d1,2

s11 −5d1,2
s12 −5d1,2

s13 −5d1,2
s14 −2d2,1

s31 −3d2,1
s32 −3d2,1

s33 −3d2,1
s34 −3d2,1

s35 −4d2,1
s36 −3d1,2

s16 −
3d1,2

s17−3d1,2
s18−d1,2

s19−d1,2
s20−d1,2

s21+d1,2
s22+d1,2

s23−d2,1
s12−d2,1

s14−d2,1
s15−d2,1

s16−d2,1
s17−d1,0

s9 −d1,1
s32−d1,0

s5 −d1,2
s32−

d1,2
s33−2d1,0

s26−3d1,0
s13 +d1,0

s32−2d1,0
s12−5d1,2

s1 −5d1,2
s2 −5d1,2

s3 −5d1,2
s4 −3d1,2

s5 −3d1,2
s6 +d1,0

s27−5d1,1
s1 −5d1,1

s2 −
5d1,1

s3 −5d1,1
s4 −3d1,1

s5 −3d1,1
s6 −3d1,0

s7 −d1,0
s16 −d2,1

s11−d1,0
s21 +2d1,0

s22 +d1,0
s23 +d1,0

s31 +2d1,0
s34 +d1,0

s35 +2d1,0
s30 −

3d1,0
s2 −3d1,2

s7 −d1,2
s8 −d1,2

s9 +d1,2
s10−3d1,2

s15−5d1,1
s11−2d1,0

s1 −5d1,1
s12−5d1,1

s13−5d1,1
s14−3d1,1

s15−3d1,1
s16−3d1,1

s17 +
d1,1

s31 −3d1,1
s18 −2d2,1

s25 −2d2,1
s26 −2d2,1

s27 −2d2,1
s28 −2d2,1

s30 −d2,1
s13 +d1,2

s36 −d1,1
s19 −d1,1

s20 +d1,1
s30 −d1,1

s21 +d1,1
s22 +

d1,1
s23−3d1,1

s24−2d1,0
s6 −3d1,1

s25−3d1,1
s26−d1,1

s27−3d1,1
s7 −d1,1

s8 −d1,1
s9 −d1,2

s27−d1,2
s28−d1,2

s29 +d1,2
s30 +d1,2

s31 +d1,2
s34−

d2,1
s18−d2,1

s19−d2,1
s20−d2,1

s21−d2,1
s22−d2,1

s23−2d2,1
s24 +d1,2

s35−3d1,2
s24−5d1,0

s4 −3d1,2
s25−3d1,2

s26 +d1,1
s10−2d2,1

s29 +2/3,

d0,0
s36 = 3d1,1

s34 + 2d1,1
s29 + 4d1,1

s36 + 3d1,1
s33 + 3d1,1

s35 + 2d1,1
s28 − 3d0,0

s1 − 2d0,0
s2 − d0,0

s3 − 2d0,0
s5 − d0,0

s6 −
d0,0

s8 − 4d0,0
s11 + 3d1,1

s32 − 3d0,0
s12 − 2d0,0

s13 − d0,0
s14 − 3d0,0

s15 − 2d0,0
s16 − d0,0

s17 − 2d0,0
s19 − d0,0

s20 − d0,0
s22 − 3d0,0

s24 −
2d0,0

s25 − d0,0
s26 − 2d0,0

s27 − d0,0
s28 − d0,0

s30 − 2d0,0
s32 − d0,0

s33 − d0,0
s34 + d1,1

s11 + d1,1
s12 + d1,1

s13 + d1,1
s14 + d1,1

s15 + d1,1
s16 +

d1,1
s17 + 2d1,1

s31 + d1,1
s18 + d1,1

s19 + d1,1
s20 + 2d1,1

s30 + d1,1
s21 + d1,1

s22 + d1,1
s23 + 2d1,1

s24 + 2d1,1
s25 + 2d1,1

s26 + 2d1,1
s27 ,
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d0,2
s34 = −d1,0

s36−d1,0
s33−d1,0

s11−8d1,1
s34−4d1,1

s29−d1,0
s14−3d0,2

s9 −4d0,2
s10+3d1,0

s10−d0,2
s4 −12d1,1

s36−8d1,1
s33−

8d1,1
s35−d1,0

s25+d1,0
s19+d1,0

s20+12d0,0
s4 +9d0,0

s7 +6d0,0
s9 −4d1,1

s28+3d0,0
s10+d1,2

s12+2d1,2
s13+3d1,2

s14+8d0,0
s18+15d0,0

s1 +
14d0,0

s2 +13d0,0
s3 −2d0,2

s21 +2d2,1
s31 +3d2,1

s32 +3d2,1
s33 +3d2,1

s34 +3d2,1
s35 +4d2,1

s36−2d1,2
s16−d1,2

s17−6d1,2
s19−5d1,2

s20−
4d1,2

s21−9d1,2
s22−8d1,2

s23+d2,1
s12+d2,1

s14+d2,1
s15+d2,1

s16+d2,1
s17+11d0,0

s5 +2d1,0
s9 +10d0,0

s6 +2d1,0
s8 +7d0,0

s8 +15d0,0
s11−

8d1,1
s32+14d0,0

s12 +13d0,0
s13 +4d0,0

s29+5d0,0
s21 +2d0,0

s23+d1,0
s5 +2d1,2

s32 +3d1,2
s33−d0,2

s1 −d0,2
s2 −d0,2

s3 −3d0,2
s22−d1,0

s26+
12d0,0

s14 −d1,0
s13 +11d0,0

s15 +10d0,0
s16 +9d0,0

s17 +7d0,0
s19 +6d0,0

s20 −d1,0
s32 +3d0,0

s22 −d1,0
s12 −3d1,2

s1 −2d1,2
s2 −d1,2

s3 −
6d1,2

s5 −5d1,2
s6 +4d1,1

s1 +4d1,1
s2 +4d1,1

s3 +4d1,1
s4 +4d1,1

s5 +4d1,1
s6 +10d0,0

s24 +9d0,0
s25 +8d0,0

s26 +6d0,0
s27 +5d0,0

s28 +
2d0,0

s30 −2d0,2
s31 −d0,2

s35 +d1,0
s7 +5d0,0

s32 +4d0,0
s33 +d0,0

s34 +d2,1
s11 +d1,0

s21 +2d1,0
s22 +2d1,0

s23 −d0,2
s15 −d0,2

s16 −d0,2
s17 −

2d0,2
s19 −2d0,2

s20 +d1,0
s31 +d1,0

s30 −3d0,2
s23 −4d1,2

s7 −9d1,2
s8 −8d1,2

s9 −12d1,2
s10 −3d1,2

s15 −4d1,1
s31 +d0,0

s31 +2d2,1
s25 +

2d2,1
s26+2d2,1

s27+2d2,1
s28+2d2,1

s30+d2,1
s13+3d1,2

s36−4d1,1
s30−4d1,1

s24+d1,0
s6 −4d1,1

s25−4d1,1
s26−4d1,1

s27−2d0,2
s7 −2d0,2

s5 −
2d0,2

s6 −3d0,2
s8 +4d1,1

s7 +4d1,1
s8 +4d1,1

s9 −d0,2
s18−d0,2

s27−d1,0
s24−d0,2

s28−2d0,2
s30−2d1,2

s27−d1,2
s28−5d1,2

s30−4d1,2
s31−

d1,2
s34 +d2,1

s18 +d2,1
s19 +d2,1

s20 +d2,1
s21 +d2,1

s22 +d2,1
s23 +2d2,1

s24−1/2+d1,2
s24 +2d1,2

s25 +3d1,2
s26 +4d1,1

s10 +2d2,1
s29−d0,2

s29 ,

d2,1
s6 = 9d1,1

s34 +d2,2
s14 +7d1,1

s29−2d2,2
s11 +d2,2

s20 +2d2,2
s21−2d2,2

s1 −d2,2
s5 −2d2,1

s7 +12d1,1
s36 +2d2,2

s26 +d2,2
s7 +

9d1,1
s33 −d2,2

s12 +10d1,1
s35 +2d2,2

s32 −12d0,0
s4 −8d0,0

s7 −4d0,0
s9 −d2,1

s2 −2d2,1
s3 +6d1,1

s28 +4d2,2
s36 −3d2,1

s4 +d1,2
s11 +

d1,2
s12 +d1,2

s13 +d1,2
s14−8d0,0

s18−12d0,0
s1 −12d0,0

s2 −12d0,0
s3 +d2,2

s22 +d2,2
s27 +d2,2

s25 +d2,1
s32 +d2,1

s34 +d2,1
s36 +4d1,2

s16 +
4d1,2

s17 +4d1,2
s18 +7d1,2

s19 +7d1,2
s20 +7d1,2

s21 +10d1,2
s22 +10d1,2

s23 −2d2,1
s14 +d2,1

s15−d2,1
s17−8d0,0

s5 −8d0,0
s6 −4d0,0

s8 −
12d0,0

s11 +8d1,1
s32−12d0,0

s12 −12d0,0
s13 −4d0,0

s29−4d0,0
s21 +d1,2

s32 +d1,2
s33 +2d2,2

s28 +3d2,2
s29 +2d2,2

s30 +3d2,2
s31−d2,1

s9 −
12d0,0

s14−8d0,0
s15−8d0,0

s16−8d0,0
s17 −4d0,0

s19−4d0,0
s20 +4d1,2

s1 +4d1,2
s2 +4d1,2

s3 +4d1,2
s4 +7d1,2

s5 +7d1,2
s6 −2d1,1

s1 −
d1,1

s2 +d1,1
s4 −d1,1

s5 −d2,2
s2 −8d0,0

s24−8d0,0
s25 −8d0,0

s26−4d0,0
s27 −4d0,0

s28 +3d2,2
s33 +3d2,2

s34 +4d2,2
s35−d2,2

s15 +d2,2
s17 +

2d2,2
s18 −4d0,0

s32 −4d0,0
s33 +d2,1

s11 +d2,2
s4 +d2,2

s10 +7d1,2
s7 +10d1,2

s8 +10d1,2
s9 +13d1,2

s10 +4d1,2
s15 +d1,1

s12 +2d1,1
s13 +

3d1,1
s14 +d1,1

s15 +2d1,1
s16 +3d1,1

s17 +7d1,1
s31 +4d1,1

s18−d2,1
s26 +d2,1

s27 +d2,1
s30−d2,1

s13 +2d2,2
s23 +d1,2

s36 +2d1,1
s19 +3d1,1

s20 +
6d1,1

s30+4d1,1
s21+3d1,1

s22+4d1,1
s23+4d1,1

s24+5d1,1
s25+6d1,1

s26+5d1,1
s27+d2,2

s9 +d1,1
s7 +d1,1

s9 +4d1,2
s27+4d1,2

s28+4d1,2
s29+

7d1,2
s30 +7d1,2

s31 +4d1,2
s34−2d2,1

s18 +d2,1
s19−d2,1

s21 +d2,1
s22 +d2,1

s24−1/3+4d1,2
s35 +d1,2

s24 +d1,2
s25 +d1,2

s26 +d1,1
s10−d2,1

s29 ,

d2,0
s31 = d2,0

s32 − d2,0
s30 + 2d1,1

s34 + d2,0
s33 + 3d1,1

s29 + 3d1,1
s36 + 3d1,1

s33 + 3d1,1
s35 + d2,0

s12 + d2,0
s13 + d2,0

s14 −
3d0,0

s4 − 2d0,0
s7 − d0,0

s9 + 2d1,1
s28 − d1,2

s11 − d1,2
s12 − d1,2

s13 − d1,2
s14 − 2d0,0

s18 − 3d0,0
s1 − 3d0,0

s2 − 3d0,0
s3 + d1,2

s19 +
d1,2

s20 + d1,2
s21 + 2d1,2

s22 + 2d1,2
s23 − 2d0,0

s5 − 2d0,0
s6 − d0,0

s8 − 3d0,0
s11 + 2d1,1

s32 − 3d0,0
s12 − 3d0,0

s13 − d0,0
s29 − d0,0

s21 −
d1,2

s32 − d1,2
s33 − 3d0,0

s14 − 2d0,0
s15 − 2d0,0

s16 − 2d0,0
s17 − d0,0

s19 − d0,0
s20 − d2,0

s5 − d2,0
s6 − d2,0

s7 + d1,2
s5 + d1,2

s6 + d2,0
s24 +

d2,0
s25 + d2,0

s26 + d1,1
s2 + 2d1,1

s3 + 3d1,1
s4 + d1,1

s6 − 2d0,0
s24 − 2d0,0

s25 − 2d0,0
s26 − d0,0

s27 − d0,0
s28 − d0,0

s32 − d0,0
s33 −

d2,0
s19 − d2,0

s20 − d2,0
s21 − 2d2,0

s22 − 2d2,0
s23 + d1,2

s7 + 2d1,2
s8 + 2d1,2

s9 + 3d1,2
s10 + d1,1

s12 + 2d1,1
s13 + 3d1,1

s14 + d1,1
s16 +

2d1,1
s17 + 2d1,1

s31 + 3d1,1
s18 + d2,0

s36 − d1,2
s36 + d1,1

s20 + d1,1
s30 + 2d1,1

s21 + d1,1
s23 + d1,1

s24 + 2d1,1
s25 + 3d1,1

s26 + d1,1
s27 +

d2,0
s11 + 2d1,1

s7 + d1,1
s9 + d1,2

s30 + d1,2
s31 − 2d2,0

s8 − 2d2,0
s9 − 3d2,0

s10 − d1,2
s24 − d1,2

s25 − d1,2
s26 ,

d0,0
s35 = −4d0,0

s4 − 3d0,0
s7 − 2d0,0

s9 − d0,0
s10 − 3d0,0

s18 − d0,0
s1 − 2d0,0

s2 − 3d0,0
s3 + d1,2

s16 + d1,2
s17 + d1,2

s18 +
2d1,2

s19 + 2d1,2
s20 + 2d1,2

s21 + 3d1,2
s22 + 3d1,2

s23 − d0,0
s5 − 2d0,0

s6 − d0,0
s8 − d0,0

s12 − 2d0,0
s13 − 2d0,0

s29 − 2d0,0
s21 − d0,0

s23 −
3d0,0

s14 −d0,0
s16 −2d0,0

s17 −d0,0
s20 +d1,2

s1 +d1,2
s2 +d1,2

s3 +d1,2
s4 + 2d1,2

s5 + 2d1,2
s6 −d0,0

s25 −2d0,0
s26 −d0,0

s28 −d0,0
s33 +

2d1,2
s7 + 3d1,2

s8 + 3d1,2
s9 + 4d1,2

s10 + d1,2
s15 − d0,0

s31 + d1,2
s27 + d1,2

s28 + d1,2
s29 + 2d1,2

s30 + 2d1,2
s31 + d1,2

s34 + d1,2
s35 ,

d2,2
s3 = 21d1,1

s34 + 2d2,2
s14 + 18d1,1

s29 − 4d2,2
s11 + 2d2,2

s19 + 4d2,2
s20 + 6d2,2

s21 − 5d2,2
s1 − 2d2,2

s5 + 29d1,1
s36 +

6d2,2
s26 +2d2,2

s7 +22d1,1
s33 −2d2,2

s12 +25d1,1
s35 +8d2,2

s32 −24d0,0
s4 −18d0,0

s7 −12d0,0
s9 +d2,2

s8 +14d1,1
s28 −6d0,0

s10 +
14d2,2

s36 + 4d1,2
s11 + 4d1,2

s12 + 4d1,2
s13 + 4d1,2

s14 − 16d0,0
s18 − 30d0,0

s1 − 28d0,0
s2 − 26d0,0

s3 + 5d2,2
s22 + 5d2,2

s27 +
2d2,1

s31 + 4d2,2
s25 + 3d2,1

s32 + 3d2,1
s33 + 3d2,1

s34 + 3d2,1
s35 + 4d2,1

s36 + 9d1,2
s16 + 9d1,2

s17 + 9d1,2
s18 + 14d1,2

s19 + 14d1,2
s20 +

14d1,2
s21 + 19d1,2

s22 + 19d1,2
s23 + d2,1

s12 + d2,1
s14 + d2,1

s15 + d2,1
s16 + d2,1

s17 − 22d0,0
s5 − 20d0,0

s6 − 14d0,0
s8 − 30d0,0

s11 +
18d1,1

s32 − 28d0,0
s12 − 26d0,0

s13 − 8d0,0
s29 − 10d0,0

s21 − 4d0,0
s23 + 2d1,2

s32 + 2d1,2
s33 + 7d2,2

s28 + 9d2,2
s29 + 8d2,2

s30 +
10d2,2

s31 −24d0,0
s14 −22d0,0

s15 −20d0,0
s16 −18d0,0

s17 −14d0,0
s19 −12d0,0

s20 −6d0,0
s22 +10d1,2

s1 +10d1,2
s2 +10d1,2

s3 +
10d1,2

s4 +15d1,2
s5 +15d1,2

s6 −8d1,1
s1 −4d1,1

s2 +4d1,1
s4 −5d1,1

s5 −d1,1
s6 −3d2,2

s2 −20d0,0
s24 −18d0,0

s25 −16d0,0
s26 −



32 The Chromatic Number of Random 5-Regular Graphs

12d0,0
s27 − 10d0,0

s28 − 4d0,0
s30 + 10d2,2

s33 + 11d2,2
s34 + 13d2,2

s35 − d2,2
s15 + d2,2

s16 + 3d2,2
s17 + 5d2,2

s18 − 10d0,0
s32 −

8d0,0
s33 − 2d0,0

s34 + d2,1
s11 + d2,2

s4 + 4d2,2
s10 + 15d1,2

s7 + 20d1,2
s8 + 20d1,2

s9 + 25d1,2
s10 + 9d1,2

s15 − 4d1,1
s11 + 4d1,1

s13 +
8d1,1

s14 − d1,1
s15 + 3d1,1

s16 + 7d1,1
s17 + 17d1,1

s31 + 11d1,1
s18 − 2d0,0

s31 + 2d2,1
s25 + 2d2,1

s26 + 2d2,1
s27 + 2d2,1

s28 + 2d2,1
s30 +

d2,1
s13 + 7d2,2

s23 + d1,2
s36 + 2d1,1

s19 + 6d1,1
s20 + 13d1,1

s30 + 10d1,1
s21 + 5d1,1

s22 + 9d1,1
s23 + 7d1,1

s24 + 11d1,1
s25 + 15d1,1

s26 +
10d1,1

s27 + 3d2,2
s9 + 2d2,2

s24 + 3d1,1
s7 − 2d1,1

s8 + 2d1,1
s9 + 8d1,2

s27 + 8d1,2
s28 + 8d1,2

s29 + 13d1,2
s30 + 13d1,2

s31 + 7d1,2
s34 +

d2,1
s18 +d2,1

s19 +d2,1
s20 +d2,1

s21 +d2,1
s22 +d2,1

s23 +2d2,1
s24 −5/6+7d1,2

s35 +3d1,2
s24 +3d1,2

s25 +3d1,2
s26 +d1,1

s10 +2d2,1
s29 ,

d0,1
s21 = −2d0,1

s30−d0,1
s28−d0,1

s25 +35d1,1
s34−2d0,1

s12 +4d2,2
s14 +28d1,1

s29−8d2,2
s11 +4d2,2

s20 +8d2,2
s21−8d2,2

s1 −
4d2,2

s5 − 3d0,1
s19 + 48d1,1

s36 + 8d2,2
s26 − d0,1

s17 + 4d2,2
s7 − 2d0,1

s20 + 36d1,1
s33 − 4d2,2

s12 + 40d1,1
s35 + 8d2,2

s32 − d0,1
s13 −

39d0,0
s4 −29d0,0

s7 −19d0,0
s9 +23d1,1

s28 −2d0,1
s24 −9d0,0

s10 +16d2,2
s36 +4d1,2

s11 +4d1,2
s12 +4d1,2

s13 +4d1,2
s14 −26d0,0

s18 −
48d0,0

s1 −45d0,0
s2 −42d0,0

s3 + 4d2,2
s22 + 4d2,2

s27 + 2d2,1
s31 + 4d2,2

s25 + 3d2,1
s32 + 3d2,1

s33 + 3d2,1
s34 + 3d2,1

s35 + 4d2,1
s36 +

13d1,2
s16 + 13d1,2

s17 + 13d1,2
s18 − 2d0,1

s27 + 22d1,2
s19 + 22d1,2

s20 − 3d0,1
s22 + 22d1,2

s21 + 31d1,2
s22 + 31d1,2

s23 + d2,1
s12 +

d2,1
s14 +d2,1

s15 +d2,1
s16 +d2,1

s17 −35d0,0
s5 −32d0,0

s6 −22d0,0
s8 −48d0,0

s11 +31d1,1
s32 −45d0,0

s12 −42d0,0
s13 −13d0,0

s29 −
16d0,0

s21 − 6d0,0
s23 + 4d1,2

s32 + 4d1,2
s33 + 8d2,2

s28 + 12d2,2
s29 + 8d2,2

s30 + 12d2,2
s31 − 39d0,0

s14 − 35d0,0
s15 − 32d0,0

s16 −
29d0,0

s17 − 22d0,0
s19 − 19d0,0

s20 − 9d0,0
s22 + 13d1,2

s1 + 13d1,2
s2 + 13d1,2

s3 + 13d1,2
s4 + 22d1,2

s5 + 22d1,2
s6 − d0,1

s31 −
11d1,1

s1 −6d1,1
s2 −d1,1

s3 + 4d1,1
s4 −7d1,1

s5 −2d1,1
s6 −4d2,2

s2 −32d0,0
s24 −29d0,0

s25 −26d0,0
s26 −2d0,1

s16 −19d0,0
s27 −

16d0,0
s28 − 6d0,0

s30 + 12d2,2
s33 − d0,1

s7 − 2d0,1
s9 − 3d0,1

s10 + 12d2,2
s34 + 16d2,2

s35 − 4d2,2
s15 + 4d2,2

s17 + 8d2,2
s18 − d0,1

s34 −
16d0,0

s32 −13d0,0
s33 −3d0,0

s34 +d2,1
s11 +4d2,2

s4 +4d2,2
s10 +22d1,2

s7 +31d1,2
s8 +31d1,2

s9 +40d1,2
s10 +13d1,2

s15 −3d1,1
s11 +

2d1,1
s12 +7d1,1

s13 +12d1,1
s14 +d1,1

s15 +6d1,1
s16 +11d1,1

s17 +27d1,1
s31 +16d1,1

s18 −3d0,0
s31 +2d2,1

s25 +2d2,1
s26 +2d2,1

s27 +
2d2,1

s28 +2d2,1
s30 +d2,1

s13 +8d2,2
s23 +4d1,2

s36 +5d1,1
s19 +10d1,1

s20 +22d1,1
s30 +15d1,1

s21 −3d0,1
s15 +9d1,1

s22 +14d1,1
s23 +

14d1,1
s24 + 19d1,1

s25 + 24d1,1
s26 + 18d1,1

s27 + 4d2,2
s9 + 3d1,1

s7 − 3d1,1
s8 + 2d1,1

s9 + 13d1,2
s27 + 13d1,2

s28 + 13d1,2
s29 +

22d1,2
s30 +22d1,2

s31 +13d1,2
s34 +d2,1

s18 +d2,1
s19 +d2,1

s20 +d2,1
s21 +d2,1

s22 +d2,1
s23 +2d2,1

s24 −5/6+13d1,2
s35 +4d1,2

s24 +
4d1,2

s25 + 4d1,2
s26 − 3d0,1

s1 − 2d0,1
s2 − d0,1

s3 − 3d0,1
s5 − 2d0,1

s6 − 3d0,1
s8 + d1,1

s10 + 2d2,1
s29 − 2d0,1

s23 − 3d0,1
s11 − d0,1

s32 ,

d2,2
s6 = −11d1,1

s34 − d2,2
s14 − 10d1,1

s29 + 2d2,2
s11 − 2d2,2

s19 − 3d2,2
s20 − 4d2,2

s21 + 2d2,2
s1 − 15d1,1

s36 − 3d2,2
s26 −

2d2,2
s7 − 12d1,1

s33 + d2,2
s12 − 13d1,1

s35 − 4d2,2
s32 + 12d0,0

s4 + 9d0,0
s7 + 6d0,0

s9 − 2d2,2
s8 − 8d1,1

s28 + 3d0,0
s10 − 7d2,2

s36 −
4d1,2

s11 −4d1,2
s12 −4d1,2

s13 −4d1,2
s14 + 8d0,0

s18 + 15d0,0
s1 + 14d0,0

s2 + 13d0,0
s3 −4d2,2

s22 −3d2,2
s27 −2d2,1

s31 −2d2,2
s25 −

3d2,1
s32 − 3d2,1

s33 − 3d2,1
s34 − 3d2,1

s35 − 4d2,1
s36 − 6d1,2

s16 − 6d1,2
s17 − 6d1,2

s18 − 8d1,2
s19 − 8d1,2

s20 − 8d1,2
s21 − 10d1,2

s22 −
10d1,2

s23 − d2,1
s12 − d2,1

s14 − d2,1
s15 − d2,1

s16 − d2,1
s17 + 11d0,0

s5 + 10d0,0
s6 + 7d0,0

s8 + 15d0,0
s11 − 10d1,1

s32 + 14d0,0
s12 +

13d0,0
s13 +4d0,0

s29 +5d0,0
s21 +2d0,0

s23 −2d1,2
s32 −2d1,2

s33 −4d2,2
s28 −5d2,2

s29 −5d2,2
s30 −6d2,2

s31 +12d0,0
s14 +11d0,0

s15 +
10d0,0

s16 + 9d0,0
s17 + 7d0,0

s19 + 6d0,0
s20 + 3d0,0

s22 − 7d1,2
s1 − 7d1,2

s2 − 7d1,2
s3 − 7d1,2

s4 − 9d1,2
s5 − 9d1,2

s6 + 2d1,1
s1 −

2d1,1
s3 −4d1,1

s4 +d1,1
s5 −d1,1

s6 +d2,2
s2 +10d0,0

s24 +9d0,0
s25 +8d0,0

s26 +6d0,0
s27 +5d0,0

s28 +2d0,0
s30 −5d2,2

s33 −6d2,2
s34 −

7d2,2
s35 −d2,2

s16 −2d2,2
s17 −3d2,2

s18 +5d0,0
s32 +4d0,0

s33 +d0,0
s34 −d2,1

s11 −d2,2
s4 −4d2,2

s10 −9d1,2
s7 −11d1,2

s8 −11d1,2
s9 −

13d1,2
s10 −6d1,2

s15 −2d1,1
s12 −4d1,1

s13 −6d1,1
s14 −d1,1

s15 −3d1,1
s16 −5d1,1

s17 −9d1,1
s31 −7d1,1

s18 +d0,0
s31 −2d2,1

s25 −2d2,1
s26 −

2d2,1
s27 −2d2,1

s28 −2d2,1
s30 −d2,1

s13 −5d2,2
s23 −d1,2

s36 −2d1,1
s19 −4d1,1

s20 −7d1,1
s30 −6d1,1

s21 −3d1,1
s22 −5d1,1

s23 −5d1,1
s24 −

7d1,1
s25 −9d1,1

s26 −6d1,1
s27 −3d2,2

s9 −d2,2
s24 −3d1,1

s7 −2d1,1
s9 −5d1,2

s27 −5d1,2
s28 −5d1,2

s29 −7d1,2
s30 −7d1,2

s31 −4d1,2
s34 −

d2,1
s18 −d2,1

s19 −d2,1
s20 −d2,1

s21 −d2,1
s22 −d2,1

s23 −2d2,1
s24 +5/6−4d1,2

s35 −3d1,2
s24 −3d1,2

s25 −3d1,2
s26 −d1,1

s10 −2d2,1
s29 ,

d0,2
s32 = d1,0

s36 +d1,0
s33 +d1,0

s11 + 8d1,1
s34 +d2,2

s14 + 6d1,1
s29 −2d2,2

s11 +d2,2
s20 + 2d2,2

s21 +d1,0
s14 +d0,2

s9 +d0,2
s10 −

3d1,0
s10−2d2,2

s1 −d2,2
s5 +d0,2

s4 +12d1,1
s36 +2d2,2

s26 +d2,2
s7 +9d1,1

s33−d2,2
s12 +9d1,1

s35 +d1,0
s25−d1,0

s19 +2d2,2
s32−d1,0

s20−
12d0,0

s4 −9d0,0
s7 −6d0,0

s9 +5d1,1
s28 −3d0,0

s10 +4d2,2
s36 +d1,2

s11 +d1,2
s12 +d1,2

s13 +d1,2
s14 −8d0,0

s18 −15d0,0
s1 −14d0,0

s2 −
13d0,0

s3 +d2,2
s22 +d2,2

s27 +d0,2
s21 +d2,2

s25 +3d1,2
s16 +3d1,2

s17 +3d1,2
s18 +5d1,2

s19 +5d1,2
s20 +5d1,2

s21 +7d1,2
s22 +7d1,2

s23 −
11d0,0

s5 −2d1,0
s9 −10d0,0

s6 −2d1,0
s8 −7d0,0

s8 −15d0,0
s11 +8d1,1

s32 −14d0,0
s12 −13d0,0

s13 −4d0,0
s29 −5d0,0

s21 −2d0,0
s23 −

d1,0
s5 −d1,2

s32−d1,2
s33 +2d2,2

s28 +3d2,2
s29 +2d2,2

s30 +3d2,2
s31−2d0,2

s1 −d0,2
s2 −2d0,2

s24−d0,2
s25 +d1,0

s26−12d0,0
s14 +d1,0

s13−
11d0,0

s15 −10d0,0
s16 −9d0,0

s17 −7d0,0
s19−6d0,0

s20 +d1,0
s32−3d0,0

s22 +d1,0
s12 +4d1,2

s1 +4d1,2
s2 +4d1,2

s3 +4d1,2
s4 +6d1,2

s5 +
6d1,2

s6 −3d1,1
s1 −2d1,1

s2 −d1,1
s3 −3d1,1

s5 −2d1,1
s6 −d2,2

s2 −10d0,0
s24 −9d0,0

s25 −8d0,0
s26 −6d0,0

s27 −5d0,0
s28 −2d0,0

s30 +
d0,2

s31 +d0,2
s35 +3d2,2

s33 −d1,0
s7 +3d2,2

s34 +4d2,2
s35 −d2,2

s15 +d2,2
s17 +2d2,2

s18 −5d0,0
s32 −4d0,0

s33 −d0,0
s34 +d2,2

s4 +d2,2
s10 −



1.5 Asymptotic Value of the Second Moment 33

d1,0
s21 −2d1,0

s22 −2d1,0
s23 −2d0,2

s12 −d0,2
s13 −2d0,2

s15 −d0,2
s16 −d0,2

s19 −d1,0
s31 −d1,0

s30 +d0,2
s23 +6d1,2

s7 +8d1,2
s8 +8d1,2

s9 +
10d1,2

s10 +3d1,2
s15 +d1,1

s12 +2d1,1
s13 +3d1,1

s14 +d1,1
s16 +2d1,1

s17 +5d1,1
s31 +3d1,1

s18 −d0,0
s31 +2d2,2

s23 −2d1,2
s36 +d1,1

s20 +
4d1,1

s30 +2d1,1
s21 +d1,1

s23 +4d1,1
s24−d1,0

s6 +5d1,1
s25 +6d1,1

s26 +4d1,1
s27 +d2,2

s9 +d0,2
s7 −d0,2

s5 −3d0,2
s11 −d1,1

s7 −3d1,1
s8 −

2d1,1
s9 +d0,2

s18 −d0,2
s27 +d1,0

s24 +2d1,2
s27 +2d1,2

s28 +2d1,2
s29 +4d1,2

s30 +4d1,2
s31 +d1,2

s34 +1/6+d1,2
s35 −3d1,1

s10 +d0,2
s29 ,

d2,1
s1 = −18d1,1

s34 − 2d2,2
s14 − 14d1,1

s29 + 4d2,2
s11 − 2d2,2

s20 − 4d2,2
s21 + 4d2,2

s1 + 2d2,2
s5 − 24d1,1

s36 − 4d2,2
s26 −

2d2,2
s7 −18d1,1

s33 +2d2,2
s12 −20d1,1

s35 −4d2,2
s32 +18d0,0

s4 +14d0,0
s7 +10d0,0

s9 −d2,1
s2 −d2,1

s3 −12d1,1
s28 +6d0,0

s10 −
8d2,2

s36 − d2,1
s4 − 2d1,2

s11 − 3d1,2
s12 − 4d1,2

s13 − 5d1,2
s14 + 12d0,0

s18 + 24d0,0
s1 + 22d0,0

s2 + 20d0,0
s3 − 2d2,2

s22 − 2d2,2
s27 −

2d2,2
s25 − 2d2,1

s32 − 2d2,1
s33 − d2,1

s34 − d2,1
s35 − 2d2,1

s36 − 7d1,2
s16 − 8d1,2

s17 − 9d1,2
s18 − 10d1,2

s19 − 11d1,2
s20 − 12d1,2

s21 −
14d1,2

s22 −15d1,2
s23 −2d2,1

s12 −2d2,1
s14 −d2,1

s15 −d2,1
s16 −d2,1

s17 +18d0,0
s5 +16d0,0

s6 +12d0,0
s8 +24d0,0

s11 −16d1,1
s32 +

22d0,0
s12 +20d0,0

s13 +6d0,0
s29 +8d0,0

s21 +4d0,0
s23−2d1,2

s32−3d1,2
s33−4d2,2

s28−6d2,2
s29−4d2,2

s30−6d2,2
s31 +d2,1

s8 +d2,1
s9 +

18d0,0
s14 +18d0,0

s15 +16d0,0
s16 +14d0,0

s17 +12d0,0
s19 +10d0,0

s20 +6d0,0
s22−7d1,2

s1 −8d1,2
s2 −9d1,2

s3 −10d1,2
s4 −11d1,2

s5 −
12d1,2

s6 +4d1,1
s1 +2d1,1

s2 −2d1,1
s4 +2d1,1

s5 +2d2,2
s2 +16d0,0

s24 +14d0,0
s25 +12d0,0

s26 +10d0,0
s27 +8d0,0

s28 +4d0,0
s30 −

6d2,2
s33−6d2,2

s34−8d2,2
s35 +2d2,2

s15−2d2,2
s17−4d2,2

s18 +8d0,0
s32 +6d0,0

s33 +2d0,0
s34−2d2,1

s11−2d2,2
s4 −2d2,2

s10−13d1,2
s7 −

15d1,2
s8 −16d1,2

s9 −19d1,2
s10 −6d1,2

s15 −2d1,1
s12 −4d1,1

s13 −6d1,1
s14 −2d1,1

s15 −4d1,1
s16 −6d1,1

s17 −14d1,1
s31 −8d1,1

s18 +
2d0,0

s31 −2d2,1
s25 −2d2,1

s26 −d2,1
s27−d2,1

s28 −2d2,1
s13 +2d2,1

s10 −4d2,2
s23 −2d1,2

s36 −4d1,1
s19 −6d1,1

s20 −12d1,1
s30 −8d1,1

s21 −
6d1,1

s22 −8d1,1
s23 −8d1,1

s24 −10d1,1
s25 −12d1,1

s26 −10d1,1
s27 −2d2,2

s9 −2d1,1
s7 −2d1,1

s9 −6d1,2
s27 −7d1,2

s28 −8d1,2
s29 −

10d1,2
s30−11d1,2

s31−6d1,2
s34−d2,1

s18 +d2,1
s22 +d2,1

s23−2d2,1
s24−7d1,2

s35−2d1,2
s24−3d1,2

s25−4d1,2
s26−2d1,1

s10−d2,1
s29 +2/3,

d2,0
s16 = 1/2+d1,0

s36−3d2,0
s32+d1,0

s33+d1,0
s11−d2,0

s30+2d1,1
s34−2d2,0

s33−d1,1
s29+d1,0

s14−3d1,0
s10+3d1,1

s36+d1,1
s33+

d1,1
s35−2d2,0

s12−d2,0
s13 +d1,0

s25−d1,0
s19−d1,0

s20−3d0,0
s4 −3d0,0

s7 −3d0,0
s9 −3d0,0

s10 +3d1,2
s11 +2d1,2

s12 +d1,2
s13−2d0,0

s18−
6d0,0

s1 −5d0,0
s2 −4d0,0

s3 −2d2,1
s31 −3d2,1

s32 −3d2,1
s33 −3d2,1

s34 −3d2,1
s35 −4d2,1

s36 +2d1,2
s16 +d1,2

s17 +3d1,2
s19 +2d1,2

s20 +
d1,2

s21 +3d1,2
s22 +2d1,2

s23 −d2,1
s12 −d2,1

s14−d2,1
s15 −d2,1

s16−d2,1
s17 −5d0,0

s5 −2d1,0
s9 −4d0,0

s6 −2d1,0
s8 −4d0,0

s8 −6d0,0
s11 +

2d1,1
s32−5d0,0

s12−4d0,0
s13−d0,0

s29−2d0,0
s21−2d0,0

s23−d1,0
s5 +d1,2

s32 +d1,0
s26−3d0,0

s14 +d1,0
s13−5d0,0

s15−4d0,0
s16−3d0,0

s17−
4d0,0

s19 −3d0,0
s20 +d1,0

s32 −3d0,0
s22 −d2,0

s1 +d2,0
s3 +2d2,0

s4 +d2,0
s6 +2d2,0

s7 +d1,0
s12 +3d1,2

s1 +2d1,2
s2 +d1,2

s3 +3d1,2
s5 +

2d1,2
s6 −3d2,0

s24 −2d2,0
s25 −d2,0

s26 −2d1,1
s1 −3d1,1

s2 −4d1,1
s3 −5d1,1

s4 −2d1,1
s5 −3d1,1

s6 −4d0,0
s24 −3d0,0

s25 −2d0,0
s26 −

3d0,0
s27−2d0,0

s28−2d0,0
s30−d1,0

s7 −2d0,0
s32−d0,0

s33−d0,0
s34−d2,1

s11−d1,0
s21−2d1,0

s22−2d1,0
s23+d2,0

s18−d2,0
s19+d2,0

s21+d2,0
s23−

2d2,0
s27−d1,0

s31−d1,0
s30 +d1,2

s7 +3d1,2
s8 +2d1,2

s9 +3d1,2
s10 +3d1,2

s15−2d2,0
s34−d1,1

s12−2d1,1
s13−3d1,1

s14−d1,1
s16−2d1,1

s17−
3d1,1

s18−d0,0
s31−2d2,1

s25−2d2,1
s26−3d2,0

s36−2d2,1
s27−2d2,1

s28−2d2,1
s30−d2,1

s13−d1,1
s20 +d1,1

s30−2d1,1
s21−d1,1

s23 +d1,1
s24−

d1,0
s6 −d1,1

s26 +d1,1
s27−3d2,0

s11−4d1,1
s7 −2d1,1

s8 −3d1,1
s9 −d2,0

s35−d2,0
s28+d1,0

s24+2d1,2
s27+d1,2

s28 +2d1,2
s30+d1,2

s31+d1,2
s34−

d2,1
s18−d2,1

s19−d2,1
s20−d2,1

s21−d2,1
s22−d2,1

s23−2d2,1
s24+d2,0

s8 +2d2,0
s9 +2d2,0

s10−2d2,0
s15+2d1,2

s24+d1,2
s25−2d1,1

s10−2d2,1
s29 ,

d0,1
s29 = 4d0,1

s30 +2d0,1
s28 −d1,0

s36 −d1,0
s33 +3d0,1

s25 −d1,0
s11 −44d1,1

s34 +5d0,1
s12 −5d2,2

s14 −35d1,1
s29 +10d2,2

s11 −
5d2,2

s20 − 10d2,2
s21 − d1,0

s14 + 3d1,0
s10 + 10d2,2

s1 + 5d2,2
s5 + 6d0,1

s19 − 60d1,1
s36 − 10d2,2

s26 + d0,1
s17 − 5d2,2

s7 + 3d0,1
s20 −

45d1,1
s33 +5d2,2

s12 −50d1,1
s35 −d1,0

s25 +d1,0
s19 −10d2,2

s32 +d1,0
s20 +2d0,1

s13 +48d0,0
s4 +36d0,0

s7 +24d0,0
s9 −29d1,1

s28 +
6d0,1

s24 +12d0,0
s10 −20d2,2

s36 −7d1,2
s11 −7d1,2

s12 −7d1,2
s13 −7d1,2

s14 +32d0,0
s18 +60d0,0

s1 +56d0,0
s2 +52d0,0

s3 −5d2,2
s22 −

5d2,2
s27 −2d2,1

s31 −5d2,2
s25 −3d2,1

s32 −3d2,1
s33 −3d2,1

s34 −3d2,1
s35 −4d2,1

s36 −18d1,2
s16 −18d1,2

s17 −18d1,2
s18 +5d0,1

s27 −
29d1,2

s19 − 29d1,2
s20 + 5d0,1

s22 − 29d1,2
s21 − 40d1,2

s22 − 40d1,2
s23 − d2,1

s12 − d2,1
s14 − d2,1

s15 − d2,1
s16 − d2,1

s17 + 44d0,0
s5 +

2d1,0
s9 + 40d0,0

s6 + 2d1,0
s8 + 28d0,0

s8 + 60d0,0
s11 − 39d1,1

s32 + 56d0,0
s12 + 52d0,0

s13 + 16d0,0
s29 + 20d0,0

s21 + 8d0,0
s23 +

d1,0
s5 −9d1,2

s32 −9d1,2
s33 −10d2,2

s28 −15d2,2
s29 −10d2,2

s30 −15d2,2
s31 −d1,0

s26 +48d0,0
s14 −d1,0

s13 +44d0,0
s15 +40d0,0

s16 +
36d0,0

s17 + 28d0,0
s19 + 24d0,0

s20 − d1,0
s32 + 12d0,0

s22 − d1,0
s12 − 17d1,2

s1 − 17d1,2
s2 − 17d1,2

s3 − 17d1,2
s4 − 28d1,2

s5 −
28d1,2

s6 + d0,1
s31 + 13d1,1

s1 + 7d1,1
s2 + d1,1

s3 − 5d1,1
s4 + 8d1,1

s5 + 2d1,1
s6 + 5d2,2

s2 + 40d0,0
s24 + 36d0,0

s25 + 32d0,0
s26 +

4d0,1
s16 + 24d0,0

s27 + 20d0,0
s28 + 8d0,0

s30 − 15d2,2
s33 − d0,1

s7 + d1,0
s7 + d0,1

s9 + 3d0,1
s10 − 15d2,2

s34 − 20d2,2
s35 + 5d2,2

s15 −
5d2,2

s17−10d2,2
s18 +3d0,1

s34 +20d0,0
s32 +16d0,0

s33 +4d0,0
s34−d2,1

s11−5d2,2
s4 −5d2,2

s10 +d1,0
s21 +2d1,0

s22 +2d1,0
s23 +d1,0

s31 +
d1,0

s30 −28d1,2
s7 −39d1,2

s8 −39d1,2
s9 −50d1,2

s10 −18d1,2
s15 +3d1,1

s11 −3d1,1
s12 −9d1,1

s13 −15d1,1
s14 −2d1,1

s15 −8d1,1
s16 −

14d1,1
s17 −34d1,1

s31 −20d1,1
s18 +4d0,0

s31 −2d2,1
s25 −2d2,1

s26 −2d2,1
s27 −2d2,1

s28 −2d2,1
s30 −d2,1

s13 −10d2,2
s23 −10d1,2

s36 −
7d1,1

s19 − 13d1,1
s20 − 28d1,1

s30 − 19d1,1
s21 + 7d0,1

s15 − 12d1,1
s22 − 18d1,1

s23 − 18d1,1
s24 + d1,0

s6 − 24d1,1
s25 − 30d1,1

s26 −



34 The Chromatic Number of Random 5-Regular Graphs

2d0,1
s18 −23d1,1

s27 −5d2,2
s9 −4d1,1

s7 +3d1,1
s8 −3d1,1

s9 −d1,0
s24 −19d1,2

s27 −19d1,2
s28 −19d1,2

s29 −30d1,2
s30 −30d1,2

s31 −
20d1,2

s34 − d2,1
s18 − d2,1

s19 − d2,1
s20 − d2,1

s21 − d2,1
s22 − d2,1

s23 − 2d2,1
s24 − 20d1,2

s35 − 8d1,2
s24 − 8d1,2

s25 − 8d1,2
s26 + 6d0,1

s1 +
3d0,1

s2 +5d0,1
s5 −d0,1

s14 +2d0,1
s6 +4d0,1

s8 −2d1,1
s10−2d2,1

s29 +2d0,1
s23−3d0,1

s4 +8d0,1
s11 +4d0,1

s32 +d0,1
s33 +2d0,1

s36 +7/6,

d2,1
s5 = d2,1

s7 + 3d0,0
s4 + d0,0

s7 − d0,0
s9 + d2,1

s2 + 2d2,1
s3 − 3d0,0

s10 + 3d2,1
s4 + d1,2

s12 + 2d1,2
s13 + 3d1,2

s14 +
2d0,0

s18 + d0,0
s2 + 2d0,0

s3 − d2,1
s31 + d2,1

s33 − d2,1
s34 + d1,2

s17 + 2d1,2
s18 − 2d1,2

s19 − d1,2
s20 − 3d1,2

s22 − 2d1,2
s23 + d2,1

s12 +
3d2,1

s14 −d2,1
s15 +d2,1

s17 −d0,0
s5 −2d0,0

s8 +d0,0
s12 +2d0,0

s13 +d0,0
s29 −2d0,0

s23 +d1,2
s33 −2d2,1

s8 −d2,1
s9 +3d0,0

s14 −d0,0
s15 +

d0,0
s17 − 2d0,0

s19 − d0,0
s20 − 3d0,0

s22 + d1,2
s2 + 2d1,2

s3 + 3d1,2
s4 − d1,2

s5 + d0,0
s25 + 2d0,0

s26 − d0,0
s27 − 2d0,0

s30 + d0,0
s33 −

d0,0
s34 + d1,2

s7 − 2d1,2
s8 − d1,2

s9 − 3d1,2
s10 − d1,2

s15 − d0,0
s31 + d2,1

s25 + 2d2,1
s26 − d2,1

s27 − 2d2,1
s30 + 2d2,1

s13 − 3d2,1
s10 −

d1,2
s27 + d1,2

s29 − 2d1,2
s30 − d1,2

s31 − d1,2
s34 + 2d2,1

s18 − 2d2,1
s19 − d2,1

s20 − 3d2,1
s22 − 2d2,1

s23 + d1,2
s25 + 2d1,2

s26 + d2,1
s29 ,

d2,0
s17 = −d1,0

s36 +4d2,0
s32−d1,0

s33−d1,0
s11 +d2,0

s30−6d1,1
s34 +3d2,0

s33−d1,1
s29−d1,0

s14 +3d1,0
s10−9d1,1

s36−5d1,1
s33−

5d1,1
s35 +d2,0

s12−d2,0
s14−d1,0

s25 +d1,0
s19 +d1,0

s20 +9d0,0
s4 +7d0,0

s7 +5d0,0
s9 −2d1,1

s28 +3d0,0
s10−5d1,2

s11−3d1,2
s12−d1,2

s13 +
d1,2

s14 +6d0,0
s18 +12d0,0

s1 +11d0,0
s2 +10d0,0

s3 +2d2,1
s31 +3d2,1

s32 +3d2,1
s33 +3d2,1

s34 +3d2,1
s35 +4d2,1

s36−4d1,2
s16−2d1,2

s17−
7d1,2

s19−5d1,2
s20−3d1,2

s21−8d1,2
s22−6d1,2

s23 +d2,1
s12 +d2,1

s14 +d2,1
s15 +d2,1

s16 +d2,1
s17 +9d0,0

s5 +2d1,0
s9 +8d0,0

s6 +2d1,0
s8 +

6d0,0
s8 +12d0,0

s11 −6d1,1
s32 +11d0,0

s12 +10d0,0
s13 +3d0,0

s29 +4d0,0
s21 +2d0,0

s23 +d1,0
s5 −d1,2

s32 +d1,2
s33 −d1,0

s26 +9d0,0
s14 −

d1,0
s13+9d0,0

s15 +8d0,0
s16+7d0,0

s17 +6d0,0
s19+5d0,0

s20−d1,0
s32+3d0,0

s22−d2,0
s1 −2d2,0

s2 −3d2,0
s3 −4d2,0

s4 −2d2,0
s5 −3d2,0

s6 −
4d2,0

s7 −d1,0
s12−6d1,2

s1 −4d1,2
s2 −2d1,2

s3 −7d1,2
s5 −5d1,2

s6 +3d2,0
s24+2d2,0

s25+d2,0
s26+4d1,1

s1 +5d1,1
s2 +6d1,1

s3 +7d1,1
s4 +

4d1,1
s5 +5d1,1

s6 +8d0,0
s24 +7d0,0

s25 +6d0,0
s26 +5d0,0

s27 +4d0,0
s28 +2d0,0

s30 +d1,0
s7 +4d0,0

s32 +3d0,0
s33 +d0,0

s34 +d2,1
s11 +d1,0

s21 +
2d1,0

s22 +2d1,0
s23−2d2,0

s18−d2,0
s20−2d2,0

s21−d2,0
s22−2d2,0

s23 +2d2,0
s27 +d1,0

s31 +d1,0
s30−3d1,2

s7 −8d1,2
s8 −6d1,2

s9 −9d1,2
s10−

6d1,2
s15 +3d2,0

s34 +d1,1
s12 +2d1,1

s13 +3d1,1
s14 +d1,1

s16 +2d1,1
s17 −2d1,1

s31 +3d1,1
s18 +d0,0

s31 +2d2,1
s25 +2d2,1

s26 +5d2,0
s36 +

2d2,1
s27 +2d2,1

s28 +2d2,1
s30 +d2,1

s13 +d1,2
s36 +d1,1

s20−3d1,1
s30 +2d1,1

s21 +d1,1
s23−3d1,1

s24 +d1,0
s6 −2d1,1

s25−d1,1
s26−3d1,1

s27 +
2d2,0

s11 +6d1,1
s7 +4d1,1

s8 +5d1,1
s9 +2d2,0

s35 +d2,0
s28−d1,0

s24−4d1,2
s27−2d1,2

s28−5d1,2
s30−3d1,2

s31−2d1,2
s34 +d2,1

s18 +d2,1
s19 +

d2,1
s20+d2,1

s21+d2,1
s22+d2,1

s23+2d2,1
s24−3d2,0

s8 −4d2,0
s9 −4d2,0

s10+d2,0
s15−1/2−3d1,2

s24−d1,2
s25 +d1,2

s26+4d1,1
s10+2d2,1

s29 ,

d0,1
s35 = −2d0,1

s30 − d0,1
s28 + d1,0

s36 + d1,0
s33 − d0,1

s25 + d1,0
s11 + 17d1,1

s34 − d0,1
s12 + 2d2,2

s14 + 13d1,1
s29 − 4d2,2

s11 +
2d2,2

s20 +4d2,2
s21 +d1,0

s14−3d1,0
s10 −4d2,2

s1 −2d2,2
s5 −2d0,1

s19 +23d1,1
s36 +4d2,2

s26 +2d2,2
s7 −d0,1

s20 +17d1,1
s33 −2d2,2

s12 +
19d1,1

s35 + d1,0
s25 − d1,0

s19 + 4d2,2
s32 − d1,0

s20 − 18d0,0
s4 − 14d0,0

s7 − 10d0,0
s9 + 11d1,1

s28 − 2d0,1
s24 − 6d0,0

s10 + 8d2,2
s36 +

3d1,2
s11 +3d1,2

s12 +3d1,2
s13 +3d1,2

s14 −12d0,0
s18 −24d0,0

s1 −22d0,0
s2 −20d0,0

s3 +2d2,2
s22 +2d2,2

s27 +2d2,2
s25 +7d1,2

s16 +
7d1,2

s17 + 7d1,2
s18 − 2d0,1

s27 + 11d1,2
s19 + 11d1,2

s20 − 2d0,1
s22 + 11d1,2

s21 + 15d1,2
s22 + 15d1,2

s23 − 18d0,0
s5 − 2d1,0

s9 −
16d0,0

s6 −2d1,0
s8 −12d0,0

s8 −24d0,0
s11 +15d1,1

s32 −22d0,0
s12 −20d0,0

s13 −6d0,0
s29 −8d0,0

s21 −4d0,0
s23 −d1,0

s5 +3d1,2
s32 +

3d1,2
s33 +4d2,2

s28 +6d2,2
s29 +4d2,2

s30 +6d2,2
s31 +d1,0

s26 −18d0,0
s14 +d1,0

s13 −18d0,0
s15 −16d0,0

s16 −14d0,0
s17 −12d0,0

s19 −
10d0,0

s20 +d1,0
s32 −6d0,0

s22 +d1,0
s12 +7d1,2

s1 +7d1,2
s2 +7d1,2

s3 +7d1,2
s4 +11d1,2

s5 +11d1,2
s6 −d0,1

s31−5d1,1
s1 −3d1,1

s2 −
d1,1

s3 +d1,1
s4 −3d1,1

s5 −d1,1
s6 −2d2,2

s2 −16d0,0
s24 −14d0,0

s25 −12d0,0
s26 −d0,1

s16−10d0,0
s27 −8d0,0

s28 −4d0,0
s30 +6d2,2

s33 +
d0,1

s7 −d1,0
s7 −d0,1

s10 +6d2,2
s34 +8d2,2

s35 −2d2,2
s15 +2d2,2

s17 +4d2,2
s18 −2d0,1

s34 −8d0,0
s32 −6d0,0

s33 −2d0,0
s34 +2d2,2

s4 +
2d2,2

s10 −d1,0
s21 −2d1,0

s22 −2d1,0
s23 −d1,0

s31 −d1,0
s30 +11d1,2

s7 +15d1,2
s8 +15d1,2

s9 +19d1,2
s10 +7d1,2

s15 −d1,1
s11 +d1,1

s12 +
3d1,1

s13 + 5d1,1
s14 + d1,1

s15 + 3d1,1
s16 + 5d1,1

s17 + 13d1,1
s31 + 7d1,1

s18 − 2d0,0
s31 + 4d2,2

s23 + 3d1,2
s36 + 3d1,1

s19 + 5d1,1
s20 +

11d1,1
s30 + 7d1,1

s21 − 2d0,1
s15 + 5d1,1

s22 + 7d1,1
s23 + 7d1,1

s24 − d1,0
s6 + 9d1,1

s25 + 11d1,1
s26 + d0,1

s18 + 9d1,1
s27 + 2d2,2

s9 +
d1,1

s7 −d1,1
s8 +d1,1

s9 +d1,0
s24 + 7d1,2

s27 + 7d1,2
s28 + 7d1,2

s29 + 11d1,2
s30 + 11d1,2

s31 + 7d1,2
s34 −1/3+ 7d1,2

s35 + 3d1,2
s24 +

3d1,2
s25 + 3d1,2

s26 −d0,1
s1 +d0,1

s3 −d0,1
s5 +d0,1

s14 −d0,1
s8 +d1,1

s10 −d0,1
s23 + 2d0,1

s4 −2d0,1
s11 −2d0,1

s32 −d0,1
s33 −2d0,1

s36 ,

d0,2
s36 = −12d1,1

s34−2d2,2
s14−11d1,1

s29 +4d2,2
s11−2d2,2

s20−4d2,2
s21 +3d0,2

s9 +3d0,2
s10+4d2,2

s1 +2d2,2
s5 +3d0,2

s4 −
15d1,1

s36 −4d2,2
s26 −2d2,2

s7 −12d1,1
s33 +2d2,2

s12 −14d1,1
s35 −4d2,2

s32 +12d0,0
s4 +9d0,0

s7 +6d0,0
s9 −9d1,1

s28 +3d0,0
s10 −

8d2,2
s36 −2d1,2

s11 −3d1,2
s12 −4d1,2

s13 −5d1,2
s14 + 8d0,0

s18 + 15d0,0
s1 + 14d0,0

s2 + 13d0,0
s3 −2d2,2

s22 −2d2,2
s27 + 2d0,2

s21 −
2d2,1

s31−2d2,2
s25−3d2,1

s32−3d2,1
s33−3d2,1

s34−3d2,1
s35−4d2,1

s36−5d1,2
s16−6d1,2

s17−7d1,2
s18−6d1,2

s19−7d1,2
s20−8d1,2

s21−
8d1,2

s22−9d1,2
s23 −d2,1

s12−d2,1
s14−d2,1

s15−d2,1
s16−d2,1

s17 +11d0,0
s5 +10d0,0

s6 +7d0,0
s8 +15d0,0

s11 −10d1,1
s32 +14d0,0

s12 +
13d0,0

s13 +4d0,0
s29 +5d0,0

s21 +2d0,0
s23−2d1,2

s32−3d1,2
s33−4d2,2

s28−6d2,2
s29−4d2,2

s30−6d2,2
s31 +3d0,2

s1 +3d0,2
s2 +3d0,2

s3 +
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2d0,2
s22 +d0,2

s24 +d0,2
s25 +d0,2

s26 +12d0,0
s14 +11d0,0

s15 +10d0,0
s16 +9d0,0

s17 +7d0,0
s19 +6d0,0

s20 +3d0,0
s22−5d1,2

s1 −6d1,2
s2 −

7d1,2
s3 −8d1,2

s4 −7d1,2
s5 −8d1,2

s6 +d1,1
s1 −d1,1

s2 −3d1,1
s3 −5d1,1

s4 −d1,1
s5 −3d1,1

s6 + 2d2,2
s2 + 10d0,0

s24 + 9d0,0
s25 +

8d0,0
s26 +6d0,0

s27 +5d0,0
s28 +2d0,0

s30 +d0,2
s31 −6d2,2

s33 −6d2,2
s34 −8d2,2

s35 +2d2,2
s15 −2d2,2

s17 −4d2,2
s18 +5d0,0

s32 +4d0,0
s33 +

d0,0
s34 −d2,1

s11 −2d2,2
s4 −2d2,2

s10 +2d0,2
s12 +2d0,2

s13 +2d0,2
s14 +2d0,2

s15 +2d0,2
s16 +2d0,2

s17 +2d0,2
s19 +2d0,2

s20 +2d0,2
s23 −

9d1,2
s7 −9d1,2

s8 −10d1,2
s9 −11d1,2

s10 −4d1,2
s15 −2d1,1

s12 −4d1,1
s13 −6d1,1

s14 −2d1,1
s15 −4d1,1

s16 −6d1,1
s17 −11d1,1

s31 −
8d1,1

s18 +d0,0
s31 −2d2,1

s25 −2d2,1
s26 −2d2,1

s27 −2d2,1
s28 −2d2,1

s30 −d2,1
s13 −4d2,2

s23 −2d1,2
s36 −4d1,1

s19 −6d1,1
s20 −9d1,1

s30 −
8d1,1

s21 −6d1,1
s22 −8d1,1

s23−5d1,1
s24 −7d1,1

s25−9d1,1
s26 −7d1,1

s27−2d2,2
s9 +3d0,2

s7 +3d0,2
s5 +3d0,2

s6 +3d0,2
s8 +2d0,2

s11−
5d1,1

s7 −3d1,1
s8 −5d1,1

s9 +2d0,2
s18 +d0,2

s27 +d0,2
s28 +d0,2

s30−4d1,2
s27−5d1,2

s28−6d1,2
s29−6d1,2

s30−7d1,2
s31−4d1,2

s34−d2,1
s18−

d2,1
s19 −d2,1

s20 −d2,1
s21 −d2,1

s22 −d2,1
s23 −2d2,1

s24 −5d1,2
s35 −2d1,2

s24 −3d1,2
s25 −4d1,2

s26 −5d1,1
s10 −2d2,1

s29 +2/3+d0,2
s29 .

The remaining variables are free.

Hereinafter, we relabel di,j
s as d1, . . . , d324 in the sense of Lemma 1.5.7. The bi,j

s are
also relabelled as b1, . . . , b324 accordingly. (Recall that bi,j

s was defined as
(5
s

)
/8100.) For a

point d = (d1, . . . , d324) ∈ D2, we call d̃ = (d1, . . . , d301).
Let ǫ > 0 be fixed but small enough. We consider the cube of side 2ǫ centred on b̃

Q̃2 = {(d1, . . . , d301) ∈ R
301 : dk ∈ [bk − ǫ, bk + ǫ], ∀k}

and the discrete subset

J̃2 = Q̃2 ∩
(

1

n
Z

301

)
.

Let us define their extension to higher dimensions:

Q2 = {(d1, . . . , d324) ∈ R
324 : (d1, . . . , d301) ∈ Q̃,

dk = Lk(d1, . . . , d301, 1/6), ∀k = 302, . . . , 324},

where the Lk’s are as in Lemma 1.5.7, and

J2 = Q2 ∩
(

1

n
Z

324

)
.

Note that b is an interior point of D2, and that for each k the function Lk(·, 1/6) is contin-
uous. Then, if ǫ is chosen small enough, we can ensure that for some δ > 0

∀d ∈ Q2, dk > δ and |dk − bk| < δ, k = 1, . . . , 324, (1.47)

and hence Q2 ⊂ D2. Moreover, since n is always divisible by 6, for each k the function
Lk(·, 1/6) maps points from 1

nZ
301 into 1

nZ, and so J2 ⊂ I2.

Recalling the definitions of f2, g2 and h2 in (1.24), we define for any (d1, . . . , d301) ∈ Q̃2

f̃2(d1, . . . , d301) = f2(d1, . . . , d324)
g̃2(d1, . . . , d301) = g2(d1, . . . , d324)

, where dk = Lk(d1, . . . , d301, 1/6), ∀k = 302, . . . , 324.

From Lemma 1.5.6 and by straightforward computations we obtain the following:

Lemma 1.5.8. The following statements hold:

• Under the Maximum Hypothesis, f2 has a unique maximum in D2 at b.

• Under the Maximum Hypothesis, f̃2 has a unique maximum in Q̃2 at b̃, with ef2(b) =
ef̃2(b̃) = 25

2455/2 ≈ 58.2309.
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• The Hessian H̃2 of f̃2 at b̃ is negative definite, and
det H̃2 = −2175310785310712111413 17 794.

• g̃2(b̃) = 29035585171 6= 0.

• Both f̃2 and g̃2 are of class C∞ in Q̃2.

We compute the contribution to E(X2) of the terms around b to get the following
result.

Lemma 1.5.9. Under the Maximum Hypothesis,

∑

d∈J2

q2(n,d)ef2(d)n ∼ (2πn)301/2

√
|det H̃2|

g̃2(b̃)enf̃2(b̃) =
23319516(2πn)301/2

76117792
√

2 13 17

(
25

24

)n

55n/2.

Proof. From (1.47), we see that for all d ∈ J2 ⊂ Q2 we must have dk > δ ∀k. Thus, from
their definition, all the mi,j

r,t are bounded away from 0, q2(n,d) ∼ g2(d) and we can write

∑

d∈J2

q2(n,d)ef2(d)n ∼
∑

J2

g2(d)enf2(d) =
∑

J̃2

g̃2(d̃)enf̃2(d̃). (1.48)

The remaining of the argument is analogous to that in the proof of Lemma 1.4.8

Now we deal with the remaining terms of the sum.

Lemma 1.5.10. Under the Maximum Hypothesis, there exists some positive real α < ef2(b)

s.t.
∑

I2\J2

q2(n,d)ef2(d)n = o (αn).

Proof. Let B be the topological closure of D2 \ Q2. We recall from Lemma 1.5.8 that f2

has a unique maximum in D2 at point b /∈ B. Then, since B is a compact set and f2 is
continuous, there must be some real β < f2(b) such that f2(x) ≤ β ∀x ∈ B. Now we observe
that all terms in the sum

∑
I2\J2

q2(n,d)ef2(d)n can be uniformly bounded by Cn162eβn,

for some fixed constant C. Note furthermore that there are at most (n + 1)324 terms in the
sum. Hence, the result holds by taking for instance α = (eβ + ef2(b))/2.

From Lemmata 1.5.9 and 1.5.10, we get

∑

I2

q2(d)ef2(d)n ∼ 23319516(2πn)301/2

76117792
√

2 13 17

(
25

24

)n

55n/2,

which together with Lemma 1.5.1, gives us the following result.

Theorem 1.5.11. Under the maximum hypothesis,

E(X2) ∼ 22319516

76117792
√

13 17

1

(2πn)2

(
25

24

)n

.
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1.6 From Configurations to Graphs

In order to transfer the results obtained in Sections 1.4 and 1.5 to G(n, 5) and prove The-
orem 1.2.1, we need to consider the restriction of P(n, 5) to simple pairings (i.e. those
without loops and multiple edges). We write P∗ and E∗ to denote probability and expec-
tation conditional to the event “P(n, 5) is simple”.

By using similar techniques to the ones developed in [13] (see also Theorem 2.6 in
[78]), we get:

Lemma 1.6.1. Let C be any fixed balanced 3-colouring of n vertices. Then,

P(P(n, 5) is simple | C ∈ RP(n,5))

is bounded away from 0, independently of C and n.

Proof. We first observe that this probability does not depend of C, since all balanced
colourings are essentially the same. We can safely relabel the cells and assume without loss
of generality that C is such that the first n/3 cells have colour 0, the next n/3 ones have
colour 1, and the last n/3 ones have colour 2.

We condition upon the event that C ∈ RP(n,5). In this new probability space, we aim
to prove that

P(P(n, 5) is simple) ∼ e−
392
75 .

A parallel couple is a set of two different pairs which connect the same two cells. The
pairs of the parallel couple are not ordered. A colourable pairing cannot have any loop,
since this would violate the colourability. Thus, if P(n, 5) satisfies C ∈ RP(n,5) without
any parallel couple, the P(n, 5) must be simple, since the corresponding multigraph has no
loops and no multiple edges.

A parallel couple is determined by giving two cells of different colour, two points in
each one, and one way of matching them. Let Y be the number of parallel couples. Let A
be the class of possible parallel couples. Then

Y =
∑

a∈A

Ya,

where Ya is the indicator variable of the event “P(n, 5) has a as a parallel couple”.
For a fixed k,

E[Y ]k =
∗∑

a1,...,ak∈A

P(
k∧

i=1

(Yai = 1)), (1.49)

where

∗∑
denotes a sum along k-tuples of pairwise different indices.

For some k-tuples (a1, . . . , ak), the term P(
∧k

i=1 (Xai = 1)) equals 0. In fact, there
might be incompatible pairs involved in different parallel couples of the k-tuple or the
locally rainbow property might be violated. We call these k-tuples non-feasible (or of type
1). When there are not such incompatibilities, we call the k-tuples feasible. Furthermore,
for feasible k-tuples, sometimes one same pair is involved in more than one parallel couple
ai. We call this a repetition. Those feasible k-tuples with some repetitions are called of
type 2, and those ones with no repetitions are called of type 3.
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By definition, the terms corresponding to k-tuples of type 1 have no weight in the
sum in (1.49).

Next, we deal with terms corresponding to k-tuples of type 3. First, we compute the
number of such k-tuples. Observe that the number of possible parallel couples is

|A| = 3 · (n/3)2 · 102 · 2,

since we choose which 2 colours are involved (3 ways), one cell for each of these colours

((n/3)2 ways), 2 points for each of these vertices (
(
5
2

)2
= 102 ways), and the way of matching

the points creating a parallel couple (2 ways). Thus an upper bound for the number of k-
tuples of type 3 would be

|A|k =
[
6 · (10n/3)2

]k
. (1.50)

We obtain a lower bound as follows. When we choose each ai, we do not to use any cell
involved in a1, . . . , ai−1 to insure the compatibility of the pairs involved in a1, . . . , ak and
to avoid repetitions. Then, the number of k-tuples of type 3 is at least

[
6 · (10(n/3 − 2k))2

]k
. (1.51)

As k is fixed, both quantities in (1.50) and (1.51) coincide asymptotically when n grows
large.

We are interested in bounding P(
∧k

i=1 (Yai = 1)) for k-tuples of type 3. Let us denote

the event
∧k

i=1 (Yai = 1) by E .

An arrangement of the points (arrangement for short) consists in specifying for each
point the colour of the cell of the point to which it is matched. Of course, we only consider
those arrangements which lead to locally rainbow colourings. Let H be the set of all
arrangements which are compatible with the event E . We have

P(E) =
∑

h∈H

P(E | h)P(h).

As long as h is compatible with E , this P(E | h) can be bounded between
(

1
5n/6

)2k
and

(
1

5n/6−2k

)2k
, independently of the specific h. Thus,

P(E) ∼
(

1

5n/6

)2k

P(h ∈ H), (1.52)

where P(h ∈ H) is the probability that the arrangement of the points is compatible with
the k-tuple of parallel couples.

In order to compute P(h ∈ H), we first observe the following: Let us just consider
the cells of any specific colour. Then, almost all arrangements of the points have the typical
proportions of cells with each type of spectrum. Thus, we can safely condition to this event.

Let us assume w.l.o.g. that the first parallel pair a1 consists of two points a and b in
a 0-coloured cell u, and two points c and d in a 1-coloured cell v, so that a and c must be
matched and so must b and d. For h to be compatible with this, cell u must have at least 2
points matched to points in 1-coloured cells and a, b must be among them. Moreover cell v
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must have at least 2 points matched with points in 0-coloured cells and c, d must be among
them. This holds with probability

(
1

10
P(2) +

3

10
P(3) +

3

5
P(4)

)2

,

where P(i) is the probability that a given cell has spectrum (i, 5 − i).

More generally, taking into account that the typical proportions of cells of spectrum
(1, 4), (2, 3), (3, 2), (4, 1) are respectively 1/6, 1/3, 1/3, 1/6, we conclude that the probability
P(h ∈ H) that an arrangement h is compatible with the k-tuple (a1, . . . , ak) is bounded

between
(

1
10

n/9
n/3 + 3

10
n/9
n/3 + 3

5
n/18
n/3

)2k
and

(
1
10

n/9
n/3−k + 3

10
n/9

n/3−k + 3
5

n/18
n/3−k

)2k
. Hence,

P(h ∈ H) ∼
(

1

10

1

3
+

3

10

1

3
+

3

5

1

6

)2k

=

(
7

30

)2k

.

Then, from (1.52), we get:

P(E) =

(
7

25n

)2k

.

We conclude that the weight in the sum in (1.49) due to the terms corresponding to k-tuples
of type 3 is asymptotically

∼
[
6 · (10n/3)2

]k
(

7

25n

)2k

=

(
392

75

)k

.

We claim that the terms corresponding to k-tuples of type 2 have negligible weight in the
sum in (1.49) asymptotically for n growing large. The calculations are analogous to those
for tuples of type 3 and we omit them here. The terms P(

∧k
i=1 (Xai = 1)) happen to be

larger in this situation, but the number of terms in the sum is much smaller.

Then, we conclude that

E[Y ]k =
∗∑

a1,...,ak∈A

P(
k∧

i=1

(Yai = 1)) ∼
(

392

75

)k

, (1.53)

and Y is asymptotically Poisson of parameter 392
75 (see Theorem 1.23 in [15]). Thus,

P(P(n, 5) is simple | C ∈ RP(n,5)) ∼ e−
392
75 .

We are now ready to prove the main result of this chapter: The fact that under
the Maximum Hypothesis, for n divisible by 6 the chromatic number of G(n, 5) is 3, with
probability bounded away from 0.

Proof of Theorem 1.2.1. From Lemma 1.6.1 and from the fact that P(P(n, 5) is simple) is
also bounded away from 0 independently of n (see, e.g., [78]), we obtain:

E∗X =

∣∣{(P,C) : P ∈ P(n, 5) is simple, C ∈ RP }
∣∣

∣∣{P : P ∈ P(n, 5) is simple}
∣∣
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=

∣∣{(P,C) : P ∈ P(n, 5), C ∈ RP }
∣∣ P(P is simple | C ∈ RP )∣∣{P : P ∈ P(n, 5)}

∣∣ P(P(n, 5) is simple)

= Θ(EX) (1.54)

For the second moment, it is sufficient the following weaker bound:

E∗(X2) =

∣∣{(P,C1, C2) : P ∈ P(n, 5) is simple, C1, C2 ∈ RP }
∣∣

∣∣{P : P ∈ P(n, 5) is simple}
∣∣

≤
∣∣{(P,C1, C2) : P ∈ P(n, 5), C1, C2 ∈ RP}

∣∣
∣∣{P | P ∈ P(n, 5)}

∣∣ P(P(n, 5) is simple)

= Θ(E(X2)) (1.55)

Therefore, we have that E∗X = Θ(EX) and E∗(X2) = O
(
E(X2)

)
. The result follows

from (1.1) and in view of Theorems 1.4.10 and 1.5.11.

1.7 The Maximum Hypothesis and its Empirical Validation

In this section we describe the evidence which supports the Maximum Hypothesis. Recall
that the hypothesis asserts that for a certain four-variable function F (n) on a bounded
domain N , F (n) has a unique global maximum at the point (1/9, 1/9, 1/9, 1/9). There are
two equivalent definitions for the function F , which give two possible approaches to numer-
ical verification of the Maximum Hypothesis. All the relevant definitions and equations are
repeated here, so that the definition of F in this section is self-contained.

We first define the domain N of F . This is the set of all non-negative real vectors
n = (n1, . . . , n4) satisfying

n1 +n2 ≤ 1

3
, n3 +n4 ≤ 1

3
, n1 +n3 ≤ 1

3
, n2 +n4 ≤ 1

3
, n1 +n2 +n3 +n4 ≥ 1

3
. (1.56)

For each n in N , we define the following nine values

n0,0 = n1, n0,1 = n2, n0,2 = 1/3 − n1 − n2

n1,0 = n3, n1,1 = n4, n1,2 = 1/3 − n3 − n4

n2,0 = 1/3 − n1 − n3, n2,1 = 1/3 − n2 − n4, n2,2 = n1 + n2 + n3 + n4 − 1/3
(1.57)

We need some more definitions before stating how to compute F at any point in its
domain.

A spectrum s is a 2 × 2 non-negative integer matrix such that each row and column
sum is at least 1, and the sum of all four entries is 5. We index the rows and columns by
−1 and 1, with −1 for the first row or column. So

s =

[
s−1,−1 s−1,1

s1,−1 s1,1

]
.

Let S denote the set of all spectra (cf. (1.9)). Note that |S| = 36. This definition of
spectrum is the same as the one presented in Section 1.3.2.
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For each ordered pair (i, j), i, j ∈ Z3, and spectrum s ∈ S, introduce a real variable
di,j

s , called a spectral variable. Also define matrices mi,j (cf. (1.10)) by

mi,j =
∑

s∈S
di,j

s s. (1.58)

Consider the following as constraints for all i and j:
∑

s∈S
di,j

s = ni,j, di,j
s ≥ 0 ∀s ∈ S, (1.59)

where the constants ni,j are defined in (1.57), and

mi,j
r,t = mi+r,j+t

−r,−t , for i, j ∈ {0, 1, 2} and r, t ∈ {−1, 1}, (1.60)

where the arithmetic in the indices is modulo 3.
Let D(n) be the set of tuples d = (di,j

s )i,j∈Z3,s∈S2 satisfying the above constraints. For

each d ∈ D(n), let F̂ (d) be the function defined as

F̂ (d) =



∏

i,j,s

((5
s

)

di,j
s

)di,j
s




∏

i,j,r,t

(mi,j
r,t)

1
2
mi,j

r,t


 . (1.61)

Note that F̂ is a function of 9 × 36 constrained variables. Since F̂ is continuous in the
compact domain defined by the constraints, it must have a maximum. Set F (n) to be the
value of this maximum.

In Section 1.5 we defined the same function F̂ (d) but extended it to the larger domain
D2 where the ni,j are not fixed but rather take any value in (1.57).

For the second definition of F , define the matrix function (also defined in (1.30))

Φ

[
x y
z w

]
= (x+y+z+w)5−(x+y)5−(x+z)5−(y+w)5−(z+w)5+x5+y5+z5+w5. (1.62)

For each of the nine possible pairs (i, j), i, j ∈ Z3, let µi,j and mi,j be 2× 2 matrices whose
rows and columns are indexed by −1 and 1 (as in the first definition of F ). For each such
(i, j), consider the 4 × 4 system (cf. (1.31))

∂ Φµi,j

∂µi,j
r,t

µi,j
r,t = mi,j

r,t, r, t = −1, 1. (1.63)

As in (1.27), we consider the following constraints, for all such i and j, and all r, t ∈ {−1, 1},

mi,j
r,t ≥ 0,

mi,j
r,t + mi,j

r,−t ≤ 4(mi,j
−r,t + mi,j

−r,−t),

mi,j
r,t + mi,j

−r,t ≤ 4(mi,j
r,−t + mi,j

−r,−t).

(1.64)

For each n in N , we define M(n) to be the set of all vectors m = (mi,j)i,j∈Z3 of 2× 2
matrices mi,j satisfying (1.64), (1.60), and also

∑

r,t

mi,j
r,t = 5ni,j, (1.65)
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M(n)M
N

~F (m) F (n)

RD(n)
D2

F̂ (d)

Figure 1.1: Relationships between the sets involved in the definition of F . The

crosses denote the maximisers of F̂ and F̃ over D(n) and M(n), respectively.

where the constants ni,j are defined in (1.57). We observe that M(n) is a polytope of
dimension 9. Given a vector m of matrices (mi,j)i,j∈Z3 in the interior of M(n), define

F̃ (m) =
∏

i,j,r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

, (1.66)

with the µi,j
r,t given in terms of the mi,j

r,t by (1.63) and required to be strictly positive. In

Section 1.5, we show that for m in the interior of M(n) the µi,j
r,t variables are determined

uniquely, and that F̃ can be continuously extended to the boundary points of the polytope.
Our second definition of F (n) is the maximum of F̃ (m) over all m lying in M(n).

This is well defined by continuity of the function and compactness of the domain.
We observe that Lemma 1.5.3 shows the equivalence of these two alternative definitions

of F . Figure 1.1 shows the different domains involved in the definition of F .
One important piece of evidence supporting the Maximum Hypothesis is the following

theorem.
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Theorem 1.7.1. The function F (n) has a local maximum at the point
(1/9, 1/9, 1/9, 1/9).

Proof. By Lemma 1.5.5, Ĝ(d) takes its maximum in D′(1/9) uniquely at the point where
all the ds are equal to

(
5
s

)
/8100. It follows by continuity of F̂ that the only values of F̂ that

can contribute to the maximum value of F in a neighbourhood of (1/9, 1/9, 1/9, 1/9) must
come from d in a neighbourhood of (

(5
s

)
/8100)s∈S . The Hessian, computed using Maple,

shows that F̂ has a local maximum here, so the local maximum of F at (1/9, 1/9, 1/9, 1/9)
follows.

Next, we describe the empirical evidence that F has a unique maximum at (1
9 , 1

9 , 1
9 , 1

9).

Let n be any fixed vector in N . Recall the definition of M′(c) from Section 1.5.1. We
observe that the projection of M(n) to the (i, j) coordinate is M′(ni,j). Let us momentarily
relax the constraints in (1.60), and consider separately each factor

G̃i,j =
∏

r,t

(
(mi,j

r,t)
1
2

µi,j
r,t

)mi,j
r,t

,

to be defined in M′(ni,j). We note that M′(ni,j) is a polytope of dimension 3, so Gi,j can
be written in terms of three free variables. In order to show that log G̃i,j is concave, it is
sufficient to see that the 3 × 3 Hessian matrix is negative definite over the domain. This
was numerically confirmed by direct computation over a fine grid of points in the domain.
Having experimentally confirmed the concavity of the logarithm of each factor of F̃ , we
conclude the concavity of log F̃ . Moreover, this concavity is not affected by adding the
constraints in (1.60), previously relaxed.

The procedure we use is based on the concavity of log F̃ . We sweep the domain N of
F . Variables n1, n2, n3, n4 take all non-negative values satisfying (1.56) in a grid of 200
steps per dimension. For each point n = (n1, . . . , n4) we compute F (n) as follows.

Procedure for computing F (n).

1. We compute the nine overlap variables ni,j from (1.57). (The sweep avoids a fine layer
of width 1/1000 around the boundary.)

2. We set m0 to be an interior point of M(n).

3. Starting from m0, we numerically maximise log F̃ in M(n) by a Newton-like iterative
method. This works well due to the concavity of log F̃ . As observed before, the
maximisation domain has dimension 9. In fact, the elements in M(n) can be expressed
in terms of the nine coordinates mi,j

1,1 by

mi,j
−1,−1 = mi−1,j−1

1,1

mi,j
1,−1 = 1

2

(
ai,j + ai+1,j−1 − ai−1,j+1

)

mi,j
−1,1 = 1

2

(
ai,j + ai−1,j+1 − ai+1,j−1

)
,

where

ai,j = 5ni,j − mi,j
1,1 − mi−1,j−1

1,1 .
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Then we must write log F̃ in terms of the mi,j
1,1 and, at each step of the maximisa-

tion, compute the gradient with respect to these nine variables. From the proof of
Lemma 1.5.5 and in view of (1.42), we can get rid of the derivatives of the µi,j

r,t and

express this gradient just in terms of the mi,j
r,t and µi,j

r,t. Hence, each iteration of the
maximisation algorithm requires the solution of the nine 4×4 systems in (1.63), which
are known to have a unique positive solution.

The maximum obtained is F (n).

Recall from Lemma 1.5.6 that F (1
9 , 1

9 , 1
9 , 1

9) = 55/225/24 ≈ 58.2309. The values of
F we obtained by this procedure for each n were always below F (1

9 , 1
9 , 1

9 , 1
9). There were

some points in the domain where a value over 58 was obtained. These points were all near
(1
9 , 1

9 , 1
9 , 1

9). Around these points we made an additional scan of the neighbourhood with
step-size 1/8000. The values obtained were always less than F (1

9 , 1
9 , 1

9 , 1
9).

The sweeping procedure was carried out by using the IBM’s Mare-Nostrum supercom-
puter in the Barcelona Supercomputing Center, which consists of 2.268 dual 64-bit processor
blade nodes with a total of 4.536 2.2 GHz PPC970FX processors.

To get rid of the Maximum Hypothesis, all it remains is bounding the derivatives of
F in the interior of its domain, which remains an open issue at the time of this work.

1.8 Extensions

This section contains a brief overview about two extensions of Theorem 1.2.1 which are not
part of this thesis. The reader should refer to [51] and [23] for further details.

It can be shown by using the small subgraph conditioning method (see [78]) that
Theorem 1.2.1 can be extended to hold a.a.s. The main obstacle for proving that the number
of locally rainbow balanced colourings is a.a.s. non-zero is the large variance of X, which
is a constant times the square of EX. However it turns out that the distribution of X is
sensibly affected by the number of cycles of given constant lengths. In fact, if we divide the
graphs into groups according to their short cycle counts, most of the variance of X comes
from the fact that the graphs of different groups have a different expected number of such
colourings. The small subgraph conditioning method overrides this fact by conditioning
upon the number of short cycles, in order to get the ratio between the Var(X) and E(X)
arbitrarily small.

In [23] there is also an argument which covers the case n is even but not necessarily
divisible by 6. Loosely, two (or four) vertices are removed from the original graph, and the
edges of their neighbours readjusted so that we obtain a 5-regular graph with the number of
vertices divisible by 6 and with a set of distinguished edges. The distribution of the resulting
graph is not exactly uniform over the set of 5-regular graphs with that particular number
of distinguished edges, but it is close to it. Then, by an argument analogous to the one for
5-regular graphs, it is shown that these graphs with a set of distinguished edges admit a.a.s.
some locally rainbow balanced colouring with some prefixed colours on the vertices of those
distinguished edges. By choosing the appropriate colours on these vertices, this colouring
can be extended to a legal 3-colouring of the original graph.
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Walkers on the Cycle and the Grid

2.1 Mobile Ad-Hoc Networks

A wireless ad-hoc network (cf. [7, 41, 81]) is an autonomous and decentralised collection of
agents, also denoted as nodes, placed in some geographical region, and able to receive and
transmit information by means of radio-frequency or an equivalent wireless device. Each
agent is equipped with an omnidirectional antenna of limited power, and thus can stablish
communication in one hop with any other agent which is located close enough. In addition,
two agents can communicate in several hops by means of intermediate transmitters. In
many applications (e.g. in sensor networks), the number of nodes in such a network is large
and they are placed without any prescribed strategy, thus at random. Then, it is natural to
model the agents as points in a finite random-point process over some domain, and represent
the network by a random graph defined the obvious way, with the agents being the vertices
and setting an edge between any two agents falling within the communication range of each
other. The resulting random graph is of a rather different nature than the classical Erdős
and Rényi model of random graphs, in which edges are selected independently with some
common probability. In fact, for a wireless ad-hoc network, the presence of wireless links
between nodes presents a significant local correlation. This fact motivates an alternative
model of random graph due to Gilbert in 1961 [35]: “To construct a random plane network,
pick points from the plane by a Poisson process with density D points per unit area. Next
joint each each pair of points by a line if they are at distance less that R.” Observe that in
such a network the nodes are selected from an infinite random-point process over the real
plane, and that each agent has the same transmission power. Several variants of this model
have been widely studied and are usually referred to as random geometric graphs. We give
a brief outlook on these graphs in Section 2.2. The theoretical properties of these graphs,
have been broadly used by many researchers to design algorithms for more efficient coverage,
communication and energy savings in ad-hoc networks, and in particular for sensor networks.
Various aspects of such networks have been studied in the static case, i.e. in which the agents
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are randomly placed but fixed [6, 53]. Algorithms for computing connectivity properties of
such a network have been studied [59], and simulation results for randomly placed agents
were reported there and in [43, 48, 47, 72]. Furthermore, several of the above-mentioned
studies mention the dynamic situation, i.e. in which the agents are mobile.

Recently, there has been an increasing interest for manets (mobile ad-hoc networks).
A manet is a type of wireless ad-hoc network in which the agents are allowed to move
freely around some prescribed environment. Several models of mobility have been proposed
in the literature — for an excellent survey of those models we refer to [47]. In all these
models, the connections in the network are created and destroyed as the vertices move closer
together or further apart, and therefore this gives rise to a random-graph process. In all
previous work, the authors performed empirical studies on network topology and routing
performance. The paper [39] also deals with the problem of maintaining connectivity of
mobile vertices communicating by radio, but from an orthogonal perspective to the one in
the present dissertation — it describes a kinetic data structure to maintain the connected
components of the union of unit-radius disks moving in the plane.

The particular mobility model used in this dissertation is often called the random
walk model in the literature. It was introduced by Guerin [38], and it can be seen as the
foundation for most of the mobility models developed afterwards [47]. In the random walk
model, each vertex selects uniformly at random a direction (angle) in which to travel. The
vertices select their velocities from a given distribution of velocities, and then each vertex
moves in its selected direction at its selected velocity. After some randomly chosen period
of time, each vertex halts, selects a new direction and velocity, and the process repeats. An
experimental study of the connectivity of the resulting ad-hoc network for this particular
model is presented in [73]. As is stated in the same paper, in many applications which
are not life-critical, connectivity is an important parameter: “Temporary network discon-
nections can be tolerated, especially if this goes along with a significant decrease of energy
consumption.” In [62] the authors use a similar model to the one used in the present paper
to prove that if the vertices are initially distributed uniformly at random, the distribution
remains uniform at any time.

To the best of our knowledge, this work presents the first analytical study on the main-
tenance of connectivity of a manet under the random walk model. As a first approximation
to the problem, in Section 2.3 we introduce the walkers model, in which the agents, denoted
walkers, move through a fixed environment modelled by a motion graph. The particular
topologies of the environment covered there are the cycle and the toroidal grid. On the
other hand in Chapter 3, we analyse a setting in which the agents move freely around the
unit torus [0, 1)2. This can be regarded as a continuous counterpart of the walkers model
on the toroidal grid, and indeed the two models bear some resemblance. However, some
aspects of the technical developments in each one are quite different, and each model has
mathematical interest on its own.

2.2 Brief Survey on Random Geometric Graphs and Related

Models

Recall from last section the model of random graph proposed by Gilbert in 1961 [35], in
which the vertices are selected from an infinite random-point process over the real plane,
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and there is an edge between any two vertices at distance less than some parameter. A
variant of this model in which the number of vertices is finite and the point process is
taken over a bounded region S has also been widely studied (see, e.g., [40, 64]). Usually,
the point process is assumed to be uniform over S, and S is taken to be the unit disk,
the unit square or their higher dimensional counterparts. Also, in order to avoid boundary
effects, it is also useful to consider S to be the d-torus which results from identifying the
opposite faces of the unit d-cube [0, 1]d. Moreover, distances in S are usually measured with
respect to the Euclidean distance, but the model can be extended without much effort to
any arbitrary ℓp-normed distance, with 1 ≤ p ≤ ∞. In general, using a different distance
just changes a constant multiplicative factor in all the expressions. All of these variations
from the original model are also usually referred to as random geometric graphs. Figure 2.1
illustrates an instance of a random geometric graph of 125 vertices over the unit square.

Figure 2.1: Random geometric graph of size 125 and radius 0.155 (by J. Petit)

Rigorously, given a metric space S, a natural number n and a positive real r, a random
geometric graph over S of size n and radius r is constructed by selecting independently and
u.a.r. n points X1, . . . ,Xn ∈ S and joining by an edge any two of them at distance at most
r. We denote the random set of points by X = X (n) =

⋃n
i=1{Xi}, and call G(X ; r) to

the resulting random geometric graph. In Section 2.3 of the present chapter, we deal with
random graphs over a discrete space S, which consists in the set of vertices of a connected
graph (the cycle and the toroidal grid). For this model, several distances are considered. On
the other hand, the random geometric graphs treated in Chapters 3 and 4, are respectively
over the unit torus [0, 1)2 under the Euclidean distance, and over the unit square [0, 1]2under
any ℓp-normed distance.

Now we survey the main known results on random geometric graphs, in particular the
ones which have some relevance to the work described in this dissertation. We often denote
by G(X ; r) a random geometric graph of size n and radius r without specifying the precise
model considered. In addition, r is regarded as a function of the number of vertices n and,
unless otherwise stated, all the presented results are asymptotic as n tends to infinity. For
an exhaustive exposition on random geometric graphs in full generality, see the monograph
by Penrose [66].

One of the most important topics when studying a family of random graphs is their
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connectivity. We wonder for which values of the parameter r of a random geometric graph
G(X ; r) we can guarantee that it is a.a.s. connected, and more accurately how the connectiv-
ity of G(X ; r) evolves as r grows. This property turns out to undergo a phase transition for
some threshold value rc. Namely, for values of r below rc (sub-critical case) G(X ; r) is a.a.s.
disconnected, and for values of r above rc (super-critical case) it is a.a.s. connected. Sev-
eral authors independently deduced the connectivity threshold value for related variants of
the random geometric graph model. Penrose [64] obtained rc for random geometric graphs
over the unit square [0, 1]2 and the d-torus [0, 1)d under the Euclidean norm. Gupta and
Kumar [40] obtained similar results for the unit disk. Also, Appel and Russo [8] computed
rc for the unit square under the ℓ∞ distance. Finally, Penrose [65] gave a stronger result,
which in particular yields the threshold for k-connectivity in the unit d-cube [0, 1]d under
any ℓp normed distance (1 ≤ p ≤ ∞), and in Chapter 13 of [66] covered this topic in full
generality. In all these cases, isolated vertices turn out to play a major role in connectivity.
In fact, rc coincides with the value of the parameter r which makes the expected number of
isolated vertices be Θ(1). This corresponds to rc =

√
(log n ± O(1))/(αpn), where αp is the

area of the unit disk in the ℓp norm, in the case that we are considering random geometric
graphs over the unit square or the unit torus with the ℓp distance (see Lemma 3.2.1 and
Theorem 3.2.2 for more details in the Euclidean case).

Another issue extensively studied in Chapter 3 of [66] is the number of components
in G(X ; r) isomorphic to a fixed graph, and thus the probability of finding components in
G(X ; r) of a given size. However the range of r covered there does not exceed Θ(

√
1/n),

below the connectivity threshold rc. In fact, a percolation argument in [66] shows that with
probability 1−o(1) no components other than isolated vertices and the giant one exist at the
connectivity threshold, without giving accurate bounds on this probability. In Chapter 3
we compute for r = rc the probability of having components other than isolated vertices
according to their size.

Now recall that a graph property Π is said to be monotone if it is preserved when edges
are added to the graph. For example, connectivity and hamiltonicity are monotone graph
properties. Given a non-trivial monotone property Π, let rΠ(n, p) be the radius at which a
random geometric graph has property Π with probability exactly p. For 0 < p < 1/2 define
the threshold width δΠ(n, p) of Π by

δΠ(n, p) = rΠ(n, 1 − p) − rΠ(n, p).

A property Π has a sharp threshold if δΠ(n, p) = o(1). Goel, Rai and Krishnamachari proved
that for random geometric graphs, any non-trivial monotone property has a sharp threshold
[36].

Other important graph invariants are the clique number ω and the chromatic number
χ. In applications, the chromatic number of a random geometric graph G(X ; r) gives an
indication of how many different channels we have to use in an ad-hoc network to avoid
interference. Elementary computations show that, when the radius r = rc, the expected
number of neighbours of a vertex in G(X ; rc) is Θ(log n). Moreover, it is not hard to prove
that the clique number ω

(
G(X ; rc)

)
and the chromatic number χ

(
G(X ; rc)

)
are a.a.s. also

Θ(log n) (see, e.g., Chapter 6 in [66]). McDiarmid [58] computed the asymptotic ratio
between these two invariants. In fact, he showed that in the sub-critical case,

χ
(
G(X ; r)

)

ω
(
G(X ; r)

) → 1 a.a.s.,
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while in the super-critical case,

χ
(
G(X ; r)

)

ω
(
G(X ; r)

) → 1.103 a.a.s.

The cover time of a graph G is the expected time taken by a simple random walk
on G to visit all vertices in G. Avin and Ercal [10] showed for some critical parameter
rcov = Θ(rc) that if r > rcov then G(X ; r) has a.a.s. optimal cover time of Θ(n log n). Note
that if r is below rc then G(X ; r) is a.a.s. disconnected and it has infinite cover time.

Another natural issue to study is the existence of Hamiltonian cycles in G(X ; r).
Penrose in Chapter 13 of his book [66] poses it as an open problem whether exactly at the
point where G(X ; r) gets 2-connected, the graph a.a.s. also becomes Hamiltonian. Petit
in [68] proved that for r = ω(

√
log n/n), G(X ; r) is Hamiltonian a.a.s. and he also gave a

distributed algorithm to find a Hamiltonian cycle in G(X ; r) with his choice of radius. In
Chapter 4 of the present dissertation, we find the sharp threshold for this property for any
ℓp metric.

There have been other types of random graphs also used to model communication
networks, and that sometimes tend to be mistaken with random geometric graphs. The
Random Euclidean graphs are constructed as follows: choose a sequence X = (X1, . . . ,Xn) of
independently and uniformly distributed (i.u.d.) points in [0, 1]d, and consider the weighted
complete graph on X , where the weight of an edge is its Euclidean length. A lot of theoretical
work has been done on this model (see, e.g., the books of Steel [76] and Yukich [82]).
Probably, the most celebrated result in this area is the Beardwood-Halton-Hammersley
Theorem [12]: Let X a sequence of i.u.d. points in [0, 1]d, and let Ln be the optimal
solution of the Travelling Salesman Problem (TSP) on the Euclidean graph defined on X .
Then there exists β(d), 0 < β(d) < ∞, such that

Ln

n(d−1)/d
→ β(d) a.a.s.,

where later on, it was experimentally obtained that 0.70 ≤ β(2) ≤ 0.73.
Another related model of random graph is the random proximity graph: Given n

labelled nodes distributed in R
2 according to a Poisson point process, and given a fixed

φ(n) ∈ Z
+, let G(n, φ(n)) be the graph formed when each node is connected with its

φ(n) nearest neighbours [80]. The main result in this area is the following characterisation
of the connectivity of G(n, φ(n)) by Xue and Kumar in the previous paper: If φ(n) ≤
0.0074 log n then G(n, φ(n)) is a.a.s. disconnected; and if φ(n) > 5. log n then G(n, φ(n))
is a.a.s. connected. See [28] for further comparisons between these models and random
geometric graphs.

Finally one world about one of the main techniques used in this dissertation when
dealing with random geometric graphs over the unit square with radius r around the con-
nectivity threshold. The dissection technique consists of first tessellating the unit square
into Θ(1/r2) small square cells, such that each contains around (Θ(log n)) vertices a.a.s.,
then solving the problem on each small cell and finally compounding the solution (or an
approximation) of the whole problem. Karp used it, together with dynamic programming,
to give an approximated solution to the Travelling Salesman Problem on Euclidean graphs
[50]. Since then, variants of the dissection technique have been widely used extensively in
the realm of random Euclidean graphs and random geometric graphs.
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2.3 The Walkers Model

Consider a setting in which a large number of mobile agents can perform concurrent basic
movements: ahead/behind/left/right, determining a grid pattern, or left/right, describing a
line. Each agent can communicate directly with any other agents which are within a given
distance d. This enables communications with agents at a further distance using several
intermediate agents. At each step in time there is an ad-hoc network defined by the dynamic
graph whose vertex set consists of the agents, with an edge between any two agents iff they
are within the distance d of each other.

We propose what we call the walkers model, defined as follows: A connected graph
MN = (V,E) with |V | = N , a number w of walkers (agents) and a “distance” d are given.
We call MN the motion graph. A set W = {1, . . . , w} of walkers are placed independently
and uniformly at random on the vertices of the motion graph MN , allowing several walkers
to lie on the same vertex. Each walker has a range d for communication; that is, two walkers
can communicate in one hop if the distance, in MN , between the position of the walkers is
at most d. Two walkers can communicate if they can reach each other by a sequence of such
hops. In addition, each walker takes an independent standard random walk on MN , i.e.
moves at each time step to a neighbouring vertex, which is chosen with equal probability.

Let V = V(MN , w) denote the tuple (v1, . . . , vw) ∈ V w of positions of the walkers on
MN . The interesting features of the walkers model are encapsulated by the random graph
of walkers, G

(
V(MN , w); d

)
. The vertices of G

(
V(MN , w); d

)
are the vertices in MN that

receive at least one walker, i.e. those ones which appear at least once in V. Two vertices in
G
(
V(MN , w); d

)
are joined by an edge iff they are at distance at most d in MN . Notice that

this ad-hoc graph generated by the placement of the walkers on MN is a very particular type
of random geometric graph. We are interested in the probability of G

(
V(MN , w); d

)
being

connected, or in the number of components and their sizes, with certain mild asymptotic
restrictions on w and d. We generally abbreviate G

(
V(MN , w); d

)
to G(V) when MN , w

and d are understood.

Our primary goal with the walkers model is to characterise the dynamics of the
connectivity of the communication network as represented by the random graph process(
G(Vt)

)
t∈Z

. Here Vt denotes the vector of positions of the walkers at time t, and G(Vt)
is the corresponding graph of walkers at that time, constructed from Vt. Formally, Vt is
obtained as follows: Start from an initial configuration of walkers V0 in which each walker
chooses independently and u.a.r. one vertex of MN . Then Vt+1 is obtained from Vt by mak-
ing each walker move simultaneously one step to a randomly selected neighbour vertex in
MN . The process is time-reversible and Vt can be obtained from Vt+1 in the same way. This
allows us to consider also negative times, by looking at the process backwards. In order to
study

(
G(Vt)

)
t∈Z

, we first examine G(V), which we call the static model. This is a snapshot
of the process at one point in time: we are interested in the distribution of the number of
components, as well as some other information which helps to answer the dynamic ques-
tions. In particular, we are interested in studying the birth and death of components, and
the sudden connection and disconnection of

(
G(Vt)

)
t∈Z

.

We consider a sequence of graphs MN with increasing numbers of vertices N , for
N tending to infinity. The parameters w and d are functions of N , and unless otherwise
indicated all asymptotic notation is with respect to N → ∞. We restrict to the case w → ∞
in order to avoid considering small-case effects. Of course we take d ≥ 1. We make further
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restrictions on w and d in order to rule out non-interesting cases, such as values of the
parameters in which the network is a.a.s. disconnected or a.a.s. connected. In this chapter,
we study the walkers model for two particular sequences of graphs MN : the cycle CN of
length N and the n×n toroidal grid TN of size N = n2. In the case of the grid, we use the
ℓp distance, for any 1 ≤ p ≤ ∞. The two cases have an essential difference that prevents a
unified treatment: for the interesting values of w and d, disconnectedness of the graph of
walkers for the cycle is basically caused by the presence of at least two large “gaps” between
the walkers around the cycle, whereas for the grid, it is caused by the presence of one or
more isolated walkers.

We now give a brief outline of some of our main results. First we consider the cy-
cle CN on N vertices. To study connectedness in this case, we introduce the concept of
a d-hole, which informally is a sequence of at least d consecutive vertices containing no
walkers between two vertices containing some walker. A parameter µ closely related to the
expected number of d-holes is introduced, and the connectedness of G(V) is characterised
in terms of µ (see Theorem 2.5.2 and Corollary 2.5.3). In fact µ = Θ(1) is a threshold
for this property, and when this condition holds we give the asymptotic distribution of the
number of components of G(V). In the dynamic setting we study the creation, evolution
and destruction of these d-holes, and in particular obtain the expected time that a given
d-hole will live from the moment it is created (see Theorems 2.5.8 and 2.5.9). Note that
we restrict the attention to the case µ = Θ(1), since we wish to study only the non-trivial
dynamic situations. One of our main results concerns the expected time that the graph of
walkers remains (dis)connected, after a point in time at which it becomes (dis)connected
(see Theorem 2.5.12). It must be noted that this quantity is affected by the particular
initial state V0. This motivates an alternative notion of the average time that

(
G(Vt)

)
t∈Z

is (dis)connected. See the discussion in Subsection 2.5.2 and Theorem 2.5.13 for further
details.

We turn now to the toroidal grid TN with N = n2 vertices, for which our results apply
with any normed ℓp distance, for 1 ≤ p ≤ ∞. A role similar to that of the d-holes in the
cycle case is played here by the isolated vertices of G(V), also called simple components.
In fact, the connectedness of G(V) is determined in terms of µ, where µ is redefined to an
expression closely related to the expected number of simple components (see Theorem 2.6.6
and Corollary 2.6.7). Moreover µ = Θ(1) is a threshold for this property, and when this
condition holds a.a.s. G(V) consists only of a “giant” component and a Poisson number of
simple components. In the dynamic setting we study properties analogous to those covered
for the cycle. In particular, we obtain asymptotic expressions for the expected lifespan of
a simple component (see Theorem 2.6.13) and the expected time that

(
G(Vt)

)
t∈Z

remains
(dis)connected from the moment it becomes (dis)connected (see Theorem 2.6.14).

The remainder of the chapter gives proofs of these theorems as well as stating and
proving related ones. In Section 2.4 we give basic definitions and technical lemmas to be
used throughout the chapter. In Section 2.5 we deal with the cycle CN , and in Section 2.6,
the toroidal grid TN . One of the main differences between this case and the cycle is the need
for a geometric lemma (Lemma 2.6.3) that may be of independent interest. This bounds
the size of the set of non-occupied vertices at distance at most d from the boundary of
any connected component in G(V). The last section contains some discussion and related
problems.
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2.4 General Definitions and Basic Results

We begin with some definitions and results which are common for all graphs MN . Let K
denote the number of components in G(V). We call a component simple if it consists of
only one isolated vertex. We define the ratio ̺ = w/N , which is the expected number of
walkers at any given vertex. Most of the statements in the chapter are in terms of ̺ rather
than w. For any v ∈ V (MN ), define hv to be the number of vertices in V (MN ) different
from v and at distance at most d from v, and define h = minv∈V hv. We say that a vertex
or set of vertices is empty of walkers (e.o.w.), or simply empty, if it contains no walkers, and
occupied otherwise. Note that there must be h empty vertices in V (MN ) within distance d
of a simple component.

By considering the coupon collector’s problem, we observe that if w = N log N +ω(N)
then G(V) is trivially a.a.s. connected due to every vertex being occupied. Moreover, for
the graphs MN which we consider in this chapter, if h ∈ Ω(N/

√
w) then G(V) is a.a.s.

connected as well. This last claim will be seen in Observations 2.5.1 and 2.6.1. Thus, we
consider throughout the chapter w ≤ N log N + O(N) and h = o(N/

√
w). In fact, our

proofs will just assume h to be o(N). Note that, for the cycle, h = 2d.
Often in this chapter we will need to compute the probability of certain configurations

of walkers involving two consecutive time steps t and t+1, in order to record the event that
walkers jump to the appropriate place at that step. There is a convenient way to formulate
this in terms of occupancy of arcs (directed edges). Let us regard MN as a directed graph,
by considering each edge as a pair of anti-parallel arcs, and let us denote by A = A(MN )
the set of arcs of MN . For any arc e = (u, v) ∈ A(MN ), we say that a walker is placed on e
between time steps t and t+1 if the walker is on u at time step t and jumps onto v within one
step. This determines an arrangement of the set of walkers on the arcs of MN in which the
position of each walker is chosen independently and with probability inversely proportional
to the degree of the origin of the arc. This way we can encode dynamic transitions between
t and t + 1 in terms of static configurations of walkers over A(MN ). Often t and t + 1 are
not explicitly mentioned when they are understood from the context.

There is an alternative formulation in terms of cells. Each vertex is divided into
as many cells as its degree, and each cell is associated with one of arcs stemming from
the vertex. Then, the transition of the system between two consecutive time steps can
be described by the placement of the walkers in the cells (see Figure 2.2). We use this
representation mainly in figures for sake of simplicity and visual clarity.

Assign size 1 to all vertices in V (MN ). For a given arc stemming from a vertex v with
degree δv, its size will be 1/δv . Given a set S of vertices or arcs, we define Size(S) to be
the sum of the sizes of its elements. Observe that the probability that one walker lies in S
is Size(S)/N .

Throughout the chapter, we are often interested in the probability of events which can
be characterised by the fact that some subset of V (MN ) or A(MN ) is e.o.w. and some other
ones are occupied. The following results provide asymptotic bounds on these probabilities,
and are used in most of the computations, sometimes without an explicit mention. The
first lemma is stated in a more general setting and is also used in Chapter 3.

Lemma 2.4.1. Consider a setting with n balls and k + 1 disjoint bins U0, . . . ,Uk, where
each ball is either placed into at most one of the bins or possibly remains outside all of them.
Suppose that each ball is assigned to bin Ui with probability pi = pi(n), independently from
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steps t, t+1

step t+1step t

Figure 2.2: The walker jumps to a neighbour according to which cell it is
placed on

the choices of the other balls. Moreover suppose that for all i (0 ≤ i ≤ k) we have pi = o(1),
where asymptotics are with respect to n → ∞ and where k is assumed to be fixed. Then, the
probability P that U0 contains no balls but for all i ∈ {1, . . . , k} Ui receives at least one is

P ∼ (1 − p0)n
k∏

i=1

(1 − e−npi).

Proof. By reordering the labels of the bins except for U0, assume that npi = o(1) if 1 ≤ i ≤ r
and npi = Ω(1) if r + 1 ≤ i ≤ k. For any expression f = o(1), we define

Pf =
∑

a1,...,ar

(−1)
Pr

i=1 ai

(
1 −

∑r
i=1 aipi

1 − f

)n

,

where the summation indices a1, . . . , ar run from 0 to 1. We can write

Pf =
∑

a1,...,ar

(−1)
Pr

i=1 ai
∑

m0,...,mr≥0
m0+···+mr=n

(
n

m0, . . . ,mr

) r∏

i=1

(−aipi

1 − f

)mi

,

with the convention 00 = 1. A changing of the order of summation converts this expression
to

Pf =
∑

m0,...,mr≥0
m0+···+mr=n

(
n

m0, . . . ,mr

) r∏

i=1

( −pi

1 − f

)mi ∑

a1,...,ar

(−1)
Pr

i=1 ai

r∏

i=1

ami
i .

All terms in this sum with some mi = 0 (1 ≤ i ≤ r) cancel, since each of these terms is
equal but has opposite sign to the one obtained by switching the value of ai. So, only the
terms with all m1, . . . ,mr ≥ 1 remain, and among these we can remove the ones with some
ai = 0. Hence,

Pf =
∑

m0≥0
m1,...,mr≥1

m0+···+mr=n

(−1)r

(
n

m0, . . . ,mr

) r∏

i=1

( −pi

1 − f

)mi

.
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Since npi = o(1), the main asymptotic weight in this sum corresponds to the term m0 = n−r
and m1, . . . ,mr = 1, so

Pf ∼ [n]r
(1 − f)r

r∏

i=1

pi ∼
r∏

i=1

npi ∼
r∏

i=1

(1 − e−npi). (2.1)

By an inclusion-exclusion argument, the probability in the statement can be written as

P =
∑

a1,...,ak

(−1)
Pk

i=1 ai

(
1 − p0 −

k∑

i=1

aipi

)n

,

where the summation indices a1, . . . , ak run from 0 to 1. Then, if we define

Par+1,...,ak
=

∑

a1,...,ar

(−1)
Pr

i=1 ai

(
1 −

∑r
i=1 aipi

1 − p0 −
∑k

i=r+1 aipi

)n

,

we can write

P = (1 − p0)n
∑

ar+1,...,ak

(−1)
Pk

i=r+1 ai

(
1 −

∑k
i=r+1 aipi

1 − p0

)n

Par+1,...,ak

= (1 − p0)n
∑

ar+1,...,ak

(−1)
Pk

i=r+1 ai exp

(
−(1 + o(1))

k∑

i=r+1

ainpi

)
Par+1,...,ak

. (2.2)

Note that for each ar+1, . . . , ak ∈ {0, 1}, in view of (2.1) and setting f = p0 +
∑k

i=r+1 aipi,
we have

Par+1,...,ak
∼

r∏

i=1

(1 − e−npi). (2.3)

The fact that npi = Ω(1) for r + 1 ≤ i ≤ k prevents the leading term of the sum in (2.2)
from cancelling out. Thus, from (2.2) and (2.3), we obtain

P ∼ (1 − p0)n
k∏

i=1

(1 − e−npi).

As an immediate consequence of this result, by regarding walkers as balls and sets of
vertices (or arcs) in MN as bins, we obtain

Lemma 2.4.2. For any fixed integer k ≥ 0, let S0, . . . ,Sk be pairwise disjoint sets of vertices
(or arcs) in MN , with sizes s0, . . . , sk respectively. If

∑k
i=0 si = o(N), then

P

(
S0 is e.o.w. ∧

k∧

i=1

(Si is occupied)

)
∼
(

1 − s0

N

)w
k∏

i=1

(
1 − e−si̺

)
.

To cover large sizes s, not necessarily o(N), and k = k(N) not necessarily fixed, we
need the following variation.
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Lemma 2.4.3. Let S ⊂ V (MN ) be a set of vertices of size s, and v1, . . . , vk ∈ V (MN ) be
vertices not in S, with 1 ≤ k ≤ N . Assume that N − s → ∞. Then the probability that S is
e.o.w. and v1, . . . , vk are all occupied is at most p0p

k−1αw(1 + o(1)) where p0 = 1 − e−̺/α,
α = 1−s/N and p = min(1, ̺/α). Here the asymptotics in the (1+o(1)) factor are uniform
over all k.

Proof. The probability of the event E that S is e.o.w. is αw. The probability that v1 is
occupied conditional upon E is 1− (1− (N − s)−1)w, which is asymptotic to p0. The lemma
follows for ̺ > α, i.e. w > N − s. Otherwise, conditional upon E and the event that
v1, . . . , vi are occupied, the probability that the next is occupied is clearly decreasing with
i and is thus at most w/(N − s) = ̺/α.

2.5 The Cycle

Here MN = CN , the cycle with N vertices.

Observation 2.5.1. Cover CN with
⌈
N⌈d/2⌉−1

⌉
paths of ⌈d/2⌉ vertices. If d = Ω(N/

√
w),

then the probability that some path is e.o.w. is at most

⌈
N

⌈d/2⌉

⌉(
1 − ⌈d/2⌉

N

)w

≤ O(
√

w)e−Ω(
√

w) → 0.

Thus, a.a.s. each of these paths is occupied (by at least one walker), and G(V) is connected.

In view of this observation, we assume for the rest of the section that d = o(N). If
d = Ω(N), then G(V) is a.a.s. connected.

To study connectedness of G(V), we introduce the concept of a hole. There is a hole
between two vertices u and v if u and v each contain at least one walker, but no vertex in
the clockwise path from u to v contains a walker. We say that such a hole follows u, or that
u is the start vertex of the hole. The number of internal vertices in a hole is its exact size.
A k-hole is a hole whose exact size is at least k. Let H be the random variable counting the
number of d-holes in the walkers model for CN . Notice that at least two d-holes are needed
to disconnect the walkers on CN . To be precise,

G(V) is connected iff H ≤ 1 and K = max{1,H}. (2.4)

2.5.1 Static Properties

Here, we study the connectedness of the graph of walkers G(V) in the static situation, by
analysing the behaviour of H. In view of (2.4), if EH → 0 then G(V) is a.a.s. connected.

We define a new parameter µ = N (1 − e−̺) e−d̺, which plays a key role in character-
ising the connectedness of G(V). Notice that

µ ∼





we−d̺ if ̺ = o(1),

N (1 − e−̺) e−d̺ if ̺ = Θ(1),

Ne−d̺ if ̺ = ω(1).

Regarding the behaviour of H, and connectedness, we have the following.
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Theorem 2.5.2. The expected number of holes satisfies

EH ∼ N
(
1 − e−̺

)
(1 − d/N)w .

Furthermore,

(i). if µ = o(1), then a.a.s. G(V) is connected,

(ii). if µ = ω(1), then a.a.s. G(V) is disconnected,

(iii). if µ = Θ(1), then H is asymptotically Poisson with mean µ.

Proof. For any vertex v in V (CN ), let Hv be an indicator random variable such that Hv = 1
iff there is a d-hole following vertex v. Then,

H =
∑

v∈V (CN )

Hv and EH =
∑

v∈V (CN )

P(Hv = 1). (2.5)

Let T bet the set of all k-tuples v = (v1, . . . , vk) of pairwise different vertices v1, . . . , vk ∈
V (CN ). We compute the kth factorial moment of H:

E[H]k =
∑

v∈T

P
(
(Hv1 = 1) ∧ · · · ∧ (Hvk

= 1)
)
. (2.6)

Let T 1 denote the set of tuples v ∈ T such that each vi and vj , i 6= j, have distance at least
d + 1 around the cycle. For v ∈ T \T 1, the probability in (2.6) is 0 since one of the vi “lies
in” the hole following some vj, and yet vi must be occupied. For v ∈ T 1, the probability
in (2.6) is easily computed by applying Lemma 2.4.2:

P
(
(Hv1 = 1) ∧ · · · ∧ (Hvk

= 1)
)
∼
(

1 − kd

N

)w (
1 − e−̺

)k
.

Since d = o(N) we have |T 1| ∼ Nk, and thus from (2.6)

E[H]k ∼
(
N
(
1 − e−̺

)
e−d̺−O(d2w/N2)

)k
. (2.7)

In particular,

EH ∼ N
(
1 − e−̺

)(
1 − d

N

)w

∼ N
(
1 − e−̺

)
e−d̺−O(d2w/N2). (2.8)

In the case µ → 0, we have also EH → 0, since (1 − d/N)w ≤ e−d̺. Then, P(H = 0) → 1,
and G(V) is connected a.a.s. In the case that µ is bounded away from 0, taking logarithms,

d̺ = log N
(
1 − e−̺

)
− log µ. (2.9)

Considering separately the cases when ̺ → 0 and when ̺ = Ω(1), we get from (2.9) that
d2w/N2 = o(1), so we can ignore the term O(d2w/N2) in the expression (2.7) and obtain

E[H]k ∼
(
N
(
1 − e−̺

)
e−d̺

)k
= µk. (2.10)

Moreover, if µ is bounded, then it follows, from (2.10) and from Theorem 1.23 in [15], that
H is asymptotically Poisson. For µ → ∞, we have that E[H]2 ∼ µ2, and so it follows from
Chebyshev’s inequality that a.a.s. H > µ/2, so G(V) is disconnected.
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The following corollary gives the asymptotic probability that G(V) is connected. It
follows immediately from the theorem in view of (2.4).

Corollary 2.5.3. P
(
G(V) is connected

)
= e−µ(1 + µ) + o(1).

2.5.2 Dynamic Properties

Assume that from an initial random placement of the walkers, at each step, every walker
moves from its current position to one of its neighbours, with probability 1/2 of going either
way. This is a standard random walk on the cycle for each walker. To study the connectivity
properties of the dynamic graph of walkers we need to introduce some notation.

A configuration or state is an arrangement of the w walkers on the vertices of CN . If
we regard the vertices of CN as elements of ZN , then each configuration can be represented
by a vector V = (v1, . . . , vw) ∈ (ZN )w, where vi indicates the vertex being occupied by
walker i. Consider the graph of configurations, where the vertices are the Nw different con-
figurations. Given a configuration V, there exists an edge between V and all configurations
(v1 ± 1, . . . , vw ± 1). Thus, any configuration has 2w neighbours, and the relationship of
being neighbours is symmetric. The dynamic process can be viewed as a random walk on
the graph of configurations, in particular, a Markov chain M = (Vt)t∈Z, where Vt denotes
the state of the process at time step t.

For N even, given any two configurations U and V, we say that they have the same
parity if for all i and j, ui − uj ≡ vi − vj mod 2. There are 2w−1 different parities. Note
that the initial parity stays invariant during the dynamic process. The following lemma is
straightforward and the proof is left to the reader.

Lemma 2.5.4. Let U and V be any two configurations and let hU ,V denote the hitting time
from U to V. If N is odd, then V is reachable from U and hU ,V is finite for any U and V.
If N is even then V is reachable from U provided that U and V have the same parity, and
in this case hU ,V is finite.

Proof. Suppose first that N is odd. For every walker i, there are two paths connecting
vertices ui and vi, whose lengths are different mod 2. Choose that path with even length
(for instance), and call this length di. Let us suppose that dm ≥ di for all i ∈ {1, . . . , w}.
We can get from state U to state V within dm steps in the following way: for each walker
i at position ui move counter-clockwise for dm−di

2 steps, and return back to the original

position in dm−di
2 more steps. Then, get to the final position vi through the appropriate

path within di steps.
Otherwise if N is even, the parity of the initial state stays invariant. Thus, we cannot

reach one state from another one with different parities. If U and V have the same parity,
we proceed in a similar way to that in the case N is odd to prove that they are mutually
reachable.

Then if N is odd, M consists on a single closed class of states, so it is irreducible
and positive recurrent. It is trivial to verify aperiodicity and thus the chain is ergodic.
However if N is even, there are 2w−1 closed classes of states, where each class consists
of all configurations with the same parity. Let V be any class of states and let V ∈ V

be a configuration. For this particular configuration, we can partition the set of walkers
W = W1 ∪ W2 so that the ones in W1 lie in odd positions of the cycle and the ones in W2
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lie in even positions. Let V1 be the set of all states which lead to this same partition, and
V2 the set of those which lead to the complementary one. Notice that V = V1∪V2. Those
states in V1 are only reachable by an even number of steps from V, and those in V2 by an
odd number of steps. Hence, if we restrict the Markov chain M to any class of states, it is
irreducible, positive recurrent, but 2-periodic and hence not ergodic.

Observation 2.5.5. Note that for any fixed t, the distribution of Vt is just that of V in the
static case. That is, the initial uniform distribution stays invariant, even though when N is
even the chain is not ergodic and there is no limit distribution. Hence, by Theorem 2.5.2,
if µ → 0 or ∞, then for any fixed t, G(Vt) is a.a.s. connected or a.a.s. disconnected,
respectively.

In view of this observation, we assume µ = Θ(1) for the remaining of the subsection,
since we wish to study only the non-trivial dynamic situations. Under this assumption,
from the proof of Theorem 2.5.2 and also recalling the restrictions on w, we have

d̺ ∼ log w → ∞, and also (1 − d/N)w ∼ e−d̺. (2.11)

We define Ht to be the random variable that counts the number of d-holes at time step
t. Then from Subsection 2.5.1, Ht is asymptotically Poisson with expectation µ = Θ(1).
For the dynamic properties of G(Vt), we are interested in the probability that a new d-hole
appears at a given time step. Moreover, we require knowledge of this probability conditional
upon the number of d-holes already existing. If there is a d-hole from u to v at time step t
and all walkers at u and v move in the same direction on the next step, a new d-hole may
appear following one of the neighbours of u (provided no new walkers move in to destroy
this). These two d-holes, though being different, are related, and the presence of the first
makes the second more likely to occur than it would otherwise be. Similarly, the exact size
of a d-hole following u may change in one step, making it technically a different d-hole, but
again, related. In all these cases, the start vertex of the d-hole “moves” by at most 1; a
d-hole at time step t + 1 which does not follow u or a neighbour of u, is not related to a
d-hole following u at time step t. To make this loose description rigorous, we need some
definitions. Define a d-hole line to be a maximal sequence of pairs (h1, t1), . . . , (hl, tl) where
hi is a d-hole existing at time step ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the
start vertex of hi is adjacent to, or equal to, the start vertex of hi−1, for 2 ≤ i ≤ l. Fix two
consecutive time steps t and t + 1. If t1 = t + 1, we say that the line is born between t and
t + 1, if tl = t the line dies between t and t + 1, and if t = ti, i ∈ {1, . . . , l − 1} we say that
the line survives between t and t+1. Note that the time-reversal of the process has a d-hole
line born at vertex u between t + 1 and t iff the d-hole line dies at u between t and t + 1.

We define random variables St, Bt and Dt to be the number of d-hole lines surviving,
being born and dying, respectively, between t and t + 1. Observe that

Dt + St = Ht and Bt + St = Ht+1. (2.12)

We often omit t from the notation when it is understood, and simply write B, D and
S. The proof of the following result is similar to that of Theorem 2.5.2, but rather more
complicated.
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Proposition 2.5.6. For any fixed t, the random variables St, Bt and Dt are asymptotically
jointly independent Poisson, with the expectations

ESt ∼





µ if ̺ = o(1),

µ − λ if ̺ = Θ(1),

3µe−̺ if ̺ = ω(1),

and EBt = EDt ∼





1
2µ̺ if ̺ = o(1),

λ if ̺ = Θ(1),

µ if ̺ = ω(1),

where λ =

(
1 − 3e−̺ − e−3̺/2

1 + e−̺/2

)
µ. Here 0 < λ < µ for ̺ = Θ(1).

Proof. In CN , let right denote ‘clockwise’ and left ‘counter-clockwise’. Moreover, for a
vertex v ∈ V (CN ) and i ≥ 0, let v + i (respectively v − i) denote the vertex i positions
to the right (resp. left) from v. All probabilities and events in this proof will involve two
consecutive time steps t and t+1. We can describe these events from a static point of view,
in terms of walkers’ occupancy of certain regions (sets of arcs or vertices), as explained in
Section 2.4. A summary of the sizes of the regions involved in these descriptions is given in
Table 2.1.

There are three ways that a d-hole line can survive at vertex v during the interval of
time t, t + 1 according to the following descriptions (see also Figure 2.3):

s1 At time step t, there are no walkers between v + 1 and v + d. At least one walker at
v moves right and all walkers at v + d + 1 and v + d + 2 (if there are any) move right.

s2 At time step t, there are no walkers between v + 1 and v + d. The walkers at v all
move left and no walkers at v − 1 move right.

s3 At time step t, there are no walkers between v + 1 and v + d. The walkers at v all
move left, at least one walker at v − 1 moves right and no walkers at v + d + 1 move
left.

Figure 2.3: Survival of a d-hole line at vertex v

Similarly, there are four ways that a d-hole line can be born at v between time steps
t and t + 1 according to the following descriptions (see also Figure 2.4):

b1 At time step t, there is a hole between v + 1 and v + d of exact size d − 2. Then all
walkers at v and v + 1 move left and all walkers at v + d and v + d + 1 move right.
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b2 At time step t, there is a hole between v + 1 and v + d + 1 of exact size d − 1. Then
all walkers at v and v + 1 move left and all walkers at v + d + 1 and v + d + 2 move
right.

b3 At time step t there is a hole between v + 1 and v + d + 1 of exact size d − 1, and
v +d+2 is occupied. Then all walkers at v and v +1 move left, all walkers at v +d+1
move right, and at least one walker at v + d + 2 moves left.

b4 At time step t there is a hole between v and v + d of exact size d − 1, and v − 1 is
occupied. Then all walkers at v move left, all walkers at v + d and v + d + 1 move
right, and at least one walker at v − 1 moves right.

Figure 2.4: Birth of a d-hole line at vertex v

Finally, there are four ways that a d-hole line can die at v between time steps t and
t + 1 according to the following descriptions (see also Figure 2.5):

d1 At time step t, there is a hole between v and v + d + 1 of exact size d. Then some
walker at v moves right and some walker at v + d + 1 moves left.

d2 At time step t, there is a hole between v and v + d + 2 of exact size d + 1. Then some
walker at v moves right and some walker at v + d + 2 moves left.

d3 At time step t there is a hole between v and v + d + 1 of exact size d, and v + d + 2
is occupied. Then some walker at v moves right, all walkers at v + d + 1 move right,
and some walker at v + d + 2 moves left.

d4 At time step t there is a hole between v and v + d + 1 of exact size d, and v − 1 is
occupied. Then some walker at v−1 moves right, all walkers at v move left, and some
walker at v + d + 1 moves left.
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Figure 2.5: Destruction of a d-hole line at vertex v

Given any v ∈ V (TN ) and for each α ∈ {1, 2, 3}, let Sα
v be the indicator function of

the event that a d-hole line survives at v due to movements of type sα. Similarly, for each
α ∈ {1, 2, 3, 4}, let Bα

v (Dα
v ) be the indicator function of the event that a d-hole line is born

(dies) at v due to movements of type bα (dα). Hence, Sv =
∑3

α=1 Sα
v , Bv =

∑4
α=1 Bα

v and
Dv =

∑4
α=1 Dα

v are the indicator variables for a survival, birth and death, respectively, at
vertex v.

Fix any naturals ℓ1, ℓ2 and ℓ3, and call ℓ = ℓ1 + ℓ2 + ℓ3. Let A =
(
{1, . . . , 3}

)ℓ1 ×(
{1, . . . , 4}

)ℓ2+ℓ3 , and let T be the set of all ℓ-tuples of pairwise different vertices in V (CN ).
Given α = (αi)

ℓ
i=1 ∈ A, and v = (vi)

ℓ
i=1 ∈ T let us define the event

Eα,v =

( ℓ1∧

i=1

(Sαi
vi

= 1)

)
∧
( ℓ1+ℓ2∧

i=ℓ1+1

(Bαi
vi

= 1)

)
∧
( ℓ∧

i=ℓ1+ℓ2+1

(Dαi
vi

= 1)

)
. (2.13)

This allows us to express the joint factorial moments as

E([S]ℓ1 [B]ℓ2 [D]ℓ3) =
∑

v∈T

∑

α∈A

P(Eα,v). (2.14)

In order to compute P(Eα,v), we partition the set of tuples T into three disjoint classes:
Let T 2 be the set of tuples v ∈ T such that all pairs of vertices in v are at distance greater
than d + 3; Let T 1 be the set of tuples v ∈ T \ T 2 such that all pairs of vertices in v are
at distance greater than d − 2; Finally, define T 0 = T \ (T 1 ∪ T 2).

First observe that if v ∈ T 0 then P(Eα,v) = 0, since some pair of different vertices in
v are at distance at most d−2 and this is not compatible with Eα,v. Now given any v ∈ T 2,
notice that the regions involved in the descriptions of the events (Sαi

vi
= 1), (Bαi

vi
= 1) and

(Dαi
vi

= 1) are disjoint for any choice of α. This allows us to compute P(Eα,v) by applying
Lemma 2.4.2 to these regions, whose sizes are listed in Table 2.1. For each j ∈ {1, 2, 3}, let
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Size empty region Size occupied regions

Survival s1 d + 1 1/2
Survival s2 d + 1 1/2
Survival s3 d + 1 2 × 1/2

Birth b1 d 2 × 1/2
Birth b2 d + 1 2 × 1/2
Birth b3 d + 1/2 3 × 1/2
Birth b4 d + 1/2 3 × 1/2

Death d1 d 2 × 1/2
Death d2 d + 1 2 × 1/2
Death d3 d + 1/2 3 × 1/2
Death d4 d + 1/2 3 × 1/2

Table 2.1: Event descriptions according to their occupancy requirements

aj be the number of entries αi of α with 1 ≤ i ≤ ℓ1 which are equal to j, i.e. the number of
survivals of type sj. Similarly, for each j ∈ {1, 2, 3, 4}, let bj be the number of entries αi of
α with ℓ1 + 1 ≤ i ≤ ℓ which are equal to j, i.e. the number of births and deaths of types bj
and dj. Observe that P(Eα,v) does not depend on the particular v ∈ T 2 or on the order of
the entries of α, but only on a = (a1, a2, a3, ) and b = (b1, b2, b3, b4). Hence we can denote
this probability by Pa,b, and it satisfies, by (2.11) and Lemma 2.4.2,

Pa,b ∼ e−̺(2ℓ1+2b2+b3+b4)/2
(

1 − e−̺/2
)ℓ+ℓ2+ℓ3+a3+b3+b4

e−d̺ℓ. (2.15)

From this and also by using

∑

α

P(Eα,v) =
∑

a1+a2+a3=ℓ1
b1+b2+b3+b4=ℓ2+ℓ3

(
ℓ1

a1, a2, a3

)(
ℓ2 + ℓ3

b1, b2, b3, b4

)
Pa,b,

we obtain the contribution to E([S]ℓ1 [B]ℓ2 [D]ℓ3) due to tuples in T 2

∑

v∈T 2

∑

α

P(Eα,v) ∼
(
N(1 − e−̺)e−d̺

)ℓ
(

e−̺(3 − e−̺/2)

1 + e−̺/2

)ℓ1

(
(1 − e−̺/2)(1 + 2e−̺/2 − e−̺)

1 + e−̺/2

)ℓ2+ℓ3

∼





µℓ1(µ̺/2)ℓ2+ℓ3 if ̺ = o(1),

(µ − λ)ℓ1λℓ2+ℓ3 if ̺ = Θ(1),

(3µe−̺)ℓ1µℓ2+ℓ3 if ̺ = ω(1),

(2.16)

where λ = µ
(

1 − e−̺(3−e−̺/2)

1+e−̺/2

)
.

It only remains to bound the weight of tuples in T 1 in E([S]ℓ1 [B]ℓ2[D]ℓ3). Fix some
v ∈ T 1 and observe that the regions involved in the description of Eα,v need not be disjoint.
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This allows that some walkers take part in the birth, death or survival of two different d-hole
lines simultaneously (see Figure 2.6 for an example of this situation). Recall that all pairs
of vertices in v are at distance greater that d−2, but some pair is at distance at most d+3.
Given any vi ∈ v, we say that vi is restricted if for some other vj ∈ v with j < i we have
dist(vi, vj) ≤ d + 3. Let r > 0 be the number of restricted vertices of the tuple v.

dd − 1

Bv1
= 1 Dv2

= 1

v3v1 v2

Figure 2.6: Walker taking part in a birth and a death simultaneously.

Suppose first that ̺ = O(1). By looking at the regions involved in the description
of Eα,v assuming that r vertices are restricted, we observe that Eα,v requires the following:
Some region of size at least ℓ(d − 2) is e.o.w., and moreover each arc in a set of at least
ℓ + ℓ2 + ℓ3 − r is occupied. Hence, from Lemma 2.4.2,

P(Eα,v) ≤
(

1 − ℓ(d − 2)

N

)w

(1 − e−̺/2)ℓ+ℓ2+ℓ3−r = O

(
̺ℓ2+ℓ3−r

N ℓ

)
.

Multiplying this by the number O(N ℓ−r) of tuples in T 1 with exactly r restricted vertices,

gives a contribution of O
(

̺ℓ2+ℓ3

wr

)
to (2.14). Recalling that µ = Θ(1), this is negligible

compared to (2.16).
Otherwise suppose that ̺ = ω(1). Each survival in the definition of Eα,v determines

a region of size d + 1 which must be e.o.w. Similarly, each birth and each death determines
a region of size at least d which must be e.o.w. However, each of the regions corresponding
to a restricted vertex may overlap by at most one arc (size 1/2) with some other considered
region. Summarising, Eα,v requires that a region of size at least ℓd + ℓ1 − r/2 is e.o.w., and
thus from Lemma 2.4.2,

P(Eα,v) ≤
(

1 − ℓd + ℓ1 − r/2

N

)w

= O

(
e−ℓ1̺+r̺/2

N ℓ

)
.

Multiplying this by the number O(N ℓ−r) of tuples in T 1 with exactly r restricted vertices,
the weight in (2.14) due to these situations is

O

(
e−ℓ1̺+r̺/2

N r

)
= O

(
e−ℓ1̺

er(d−1/2)̺

)
,

which is negligible compared to (2.16).
We conclude that the main contribution to E([S]ℓ1 [B]ℓ2[D]ℓ3) is due to tuples in T 2.

As we are assuming µ bounded, it follows, from (2.16) and from Theorem 1.23 in [15], that S,
B, D are jointly asymptotically independent Poisson, with the corresponding expectations.

From (2.12) and Proposition 2.5.6, the following is immediate.

Corollary 2.5.7. Ht and Bt are asymptotically independent, and so are Dt and Ht+1.
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It is natural to define the lifespan of a d-hole line as the number of time steps for
which the line is alive. For any vertex v and time step t, consider the random variable Lv,t

defined as follows: If at time step t + 1 there is a d-hole following vertex v, then Lv,t is
the number of time steps, possibly infinity, that the corresponding d-hole line stays alive
starting from time step t + 1; Otherwise, Lv,t is defined to be 0. So if a birth takes place at
vertex v precisely between time steps t and t + 1, then Lv,t corresponds to the lifespan of
the d-hole line being born. Note that the random variables Lv,t are identically distributed
for all v and t.

Observe that we can always reach a state in which there are no d-holes. In view
of (2.11), one way to do this is to force the walkers to move to positions in which they are
almost equally spaced around the cycle. Then, by Lemma 2.5.4, for any initial state, the
process will reach some state with no d-holes within finite expected time. Therefore the
expected lifespan of any given d-hole line, given the configuration of walkers at its birth, is
finite (it is simply a function of N , d and w). In view of this, we define the average lifespan
of d-hole lines to be the expected time that a d-hole line will survive once born. Formally,

Lav := E
(
Lv,t | Bv,t = 1

)
,

where Bv,t is the indicator variable of having a birth at vertex v between time steps t and
t + 1. By symmetry, Lav is independent of v and t, and so is a function of N , d and w. The
next result finds its size.

Theorem 2.5.8. The average lifespan of d-hole lines satisfies

Lav =
EH

EB
∼





2̺−1 if ̺ = o(1),
µ
λ if ̺ = Θ(1),

1 if ̺ = ω(1),

where λ is defined as in Proposition 2.5.6.

Proof. Observe that for any t ∈ Z,

∑

v∈V (CN )

Lv,t−1 +
∑

v∈V (CN )

Bv,tLv,t = Ht−1 +
∑

v∈V (CN )

Lv,t, (2.17)

where the distributions of Ht, Bv,t and Lv,t do not depend on v and t. Recall that a state
with no d-holes can be reached within finite expected time, so ELv,t < +∞. In view of this,
we take expectations at both sides of (2.17) and get

NE(Bv,tLv,t) = EH.

Now the remaining follows easily:

E(Lv,t | Bv,t = 1) =
E(Bv,tLv,t)

P(Bv,t = 1)
=

EH

NP(Bv,t = 1)
=

EH

EB
.

The final formula for this expression comes immediately from Theorem 2.5.2 and Proposi-
tion 2.5.6.
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Intuitively, Lav measures the average lifespan of the ‘typical’ d-hole lines appearing in(
G(Vt)

)
t∈Z

. However, there are other alternative measures of this intuitive notion which are
also natural to consider. To give a feeling for the complexity of the question of how long a
d-hole line lives, we introduce the following train paradox. A student wishes to measure the
average length of a train in a station with two separate platforms A and B. Each morning,
she chooses either platform A or B, at random. She waits for the first train to leave on
that platform, and records its length. She finds after many days that the average length
recorded is 9 cars. But she notices that, restricted to the days that the train is already at
the platform when she arrives, the average length is only 8 cars.

Could it be that the shorter trains wait longer for her? No, because the trains stop at
stations for equal times. Moreover, on any given platform they arrive regularly at equally
spaced intervals, so the well known bus paradox does not directly apply.

Which is a better measure, the length of the first train to arrive, or the length of
trains arriving at a prescribed time? The former, yielding the answer 9, might seem more
natural at first. However, the explanation for the differing answers reveals the other to be
meaningful, and perhaps even more so. The data above, in both versions of the paradox,
arise if platform A has trains of average length 12 arriving every 10 minutes, and platform
B has trains of average length 6 arriving at 5 minute intervals. In an extended time period,
recording all the lengths of trains on all platforms will yield 8 as the average.

Returning to the walkers model, when N is even there are many different configu-
rations of walkers that cannot arise from a given initial configuration V0. Recall that M

is not ergodic, and that each configuration belongs to a closed class of mutually reachable
configurations (precisely all those configurations with the same parity). The different classes
of states correspond to different platforms in the train paradox. The quantity Lav in Theo-
rem 2.5.8 is roughly equivalent to our traveller’s measurement of length of trains restricted
to those days that a train is just arriving. However, the train paradox shows that this is
not the only reasonable measure of average length. Moreover, the situation is even more
complicated, as the train paradox would be if on a given platform several trains could arrive
simultaneously and also the inter-train time periods were variable . The average length of
the first train to arrive would then be affected by any dependence between the length of a
train and the time before the previous train. We wish to study the analogue of the average
length of trains on a given platform: the average lifespan of d-hole lines given the initial
state. If N is divisible by 2 and the initial configuration V0 is conditioned upon, the walk-
ers process is “locked in” to a future in which the (conditional) average lifespan of d-hole
lines may be different from Lav. However, we show that for almost all initial configurations
this average is essentially asymptotically equal to Lav. For T ∈ Z

+, we define the average
lifespan of the d-hole lines born in [0, T − 1] to be

LT =

T−1∑
t=0

∑
v∈V

Bv,tLv,t

∣∣∣
{

(v, t) : Bv,t = 1
}∣∣∣

,

where the denominator runs over all pairs (v, t) ∈ V (CN ) × {0, . . . , T − 1}. If the denomi-
nator is zero (or the numerator is infinite, which happens with probability 0), the value is
immaterial, and may be defined as 0. Note that LT is a function of a given trajectory of
the process.



66 Walkers on the Cycle and the Grid

We show that LT converges in probability as T → ∞ to a random variable which may
depend on the class of the initial state, but nothing else. (Actually, the value is in general
different for different classes.) Define

L∗ =
E(H0 | V)

E(B0 | V)
,

where V is the random variable which accounts for the closed class in which the initial state
V0 lies. The notation f ∼ g a.a.s. used in the following theorem denotes that for all ǫ > 0,
a.a.s. |f/g − 1| < ǫ (see for example [79]).

Theorem 2.5.9. For the walkers model on CN , LT converges in probability as T → ∞
(with N fixed) towards L∗. Furthermore, as N → ∞, we have L∗ ∼ Lav a.a.s.

Proof. Let us define the truncated average lifespan of d-hole lines in [0, T − 1] to be

LT =

∑T−1
t=0 Ht

H0 +
∑T−2

t=0 Bt

(defined by convention to be 0 if the denominator is 0). As we prove below, this is an
approximation of LT .

We first deal with the case that N is even. To prove the result we need to take into
account the class of states containing the initial one, since different starting configurations
of walkers may lead to different expected numbers of holes and births. Let V be the random
variable accounting for the closed class of states where the initial state V0 lies. We condition
on the value of V. By Lemma 2.5.4, the hitting time between any two states in this class
is finite. Consider the Doob Martingale Σ0, . . . , ΣT defined by

Σi = E

(
T−1∑

t=0

Ht

∣∣∣∣ V,V0, . . .Vi−1

)
, i = 0, . . . , T.

We have Σ0 = TE(H0 | V) and ΣT =
∑T

t=1 Ht. (We recall that this last expression is
regarded in the probability space conditional upon the value of V.)

From the fact that the expected hitting time between any two states is finite, we
deduce that the differences |Σi+1 −Σi| are bounded above by a constant independent of T .
Hence as an immediate consequence of Azuma’s inequality we get that, conditional upon
the value of V,

lim
T→∞

1

T

T−1∑

t=0

Ht = E(H0 | V) in probability (2.18)

and by a similar argument

lim
T→∞

1

T

(
H0 +

T−2∑

t=0

Bt

)
= E(B0 | V) in probability. (2.19)

Then, by taking the ratio of (2.18) and (2.19), we get that

lim
T→∞

LT = L∗ in probability. (2.20)
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The case that N is odd is easier. There is just one closed class of states and M(N,w, d)
is ergodic. By the martingale argument as above, we get (noting Theorem 2.5.8)

lim
T→∞

LT =
EH0

EB0
= Lav in probability. (2.21)

Moreover, since Ht and Bt are at most N and the expected lifespan of any line is finite, we
obtain

lim
T→∞

LT − LT = 0 in probability. (2.22)

Thus the portions of lifespans omitted in LT have finite expectation, which is insignificant
since the denominator grows linearly with T as shown in (2.19).

In order to finish the proof, it suffices to show that as N → ∞

L∗ ∼ Lav a.a.s.

We note that the quantity E(H0 | V)/E(B0 | V) may vary depending on the particular
closed class of states V. Let us study this in more detail. Let V ∈ V be a configuration.
As in Subsection 2.5.2, let us partition the set of walkers W into W1 and W2 according to
the parity of their positions in the cycle. Let us define the imbalance of the configuration
as ∆(V) = |w1 − w2| where wi = |Wi|. It makes sense to define ∆(V) = ∆(V) since it does
not depend on the choice of V ∈ V.

We can compute the expectations of S, B and D conditional upon (V0 ∈ V) by
proceeding the same way as in Proposition 2.5.6. The only difference is that w1 walkers
must go to N

2 of the vertices (say those with odd position) and w2 must go to the other N
2 .

We omit details here since they are fairly tedious but completely analogous to the previous
computations. We note that these expectations do not depend on the particular partition
(W1,W2) but only on the imbalance ∆(V). In all cases we get the following

E(H0 | V)

E(B0 | V)
= Θ

(
EH0

EB0

)
. (2.23)

In fact, for ∆(V)
N = O(1) we have E(H0 | V) = Θ (EH0) and E(B0 | V) = Θ (EB0). For

∆(V)
N → ∞, these two statements are no longer true, but the extra factors in numerator and

denominator of (2.23) cancel out to within a factor of Θ(1).
However, not all imbalances are equally likely. In fact for any ǫ > 0, we have

P
(

∆(V0) ≥ w
1+ǫ
2

)
= P

(∣∣∣w1(V0) − w

2

∣∣∣ ≥ 1

2
w

1+ǫ
2

)
≤ w

w1+ǫ
= o(1). (2.24)

Moreover, for a (typical) class V such that ∆(V) < w
1+ǫ
2 and by the method explained

above, we get
E(H0 | V)

E(B0 | V)
∼ EH0

EB0
. (2.25)

From this last fact together with (2.23) and (2.24), the theorem follows.

Before stating the main results in this subsection, we need some definitions and a
technical result. Let E be an event in the static model G(V). We denote by Et the event
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that E holds at step time t. In the
(
G(Vt)

)
t∈Z

model, we define Lt(E) to be the number of
consecutive steps that E holds starting at step t (possibly 0 if Et does not hold, or infinity).
Formally,

Lt(E) =

∞∑

k=0

1[Et] · · · 1[Et+k].

Note that the distribution of Lt(E) does not depend on t, and we will often omit the t when
it is understood or not relevant.

Lemma 2.5.10. Consider any event E in the static model. If we have that E(L(E)) < +∞
(but possibly E(L(E)) → +∞ as N → +∞), then conditional upon Et but not Et−1 we have

E(Lt(E) | Et−1 ∧ Et) =
P(E)

P(Et−1 ∧ Et)
,

which does not depend on t.

Proof. We have that

Lt−1 + 1[Et−1]Lt = 1[Et−1] + Lt

and taking expectations and using the hypothesis that E(L(E)) < +∞ we get

E(1[Et−1]Lt(E)) = P(E), ∀t ∈ Z.

Using the fact that

E(Lt(E) | Et−1 ∧ Et) =
E(1[Et−1 ∧ Et]Lt(E))

P(Et−1 ∧ Et)
=

E(1[Et−1]Lt(E))

P(Et−1 ∧ Et)
,

the result follows.

We turn now to connectivity issues, for which we use (2.4). For each t ∈ Z, we define
Ct (respectively Dt) to be the event that G(Vt) is connected (respectively disconnected).
The next lemma gives the probability that the connectedness of G(Vt) changes between
step times t and t + 1.

Lemma 2.5.11. The probability that G(Vt) is connected and that G(Vt+1) is disconnected
is given by

P
(
Ct ∧ Dt+1

)
∼





1
2µ2e−µ̺ if ̺ = o(1),

e−µ
(
1 + µ − (1 + µ + λ + λ2)e−λ

)
if ̺ = Θ(1),

(1 + µ)e−µ(1 − (1 + µ)e−µ) if ̺ = ω(1),

where λ is defined as in Proposition 2.5.6.

Proof. In view of (2.4), we have that P
(
Ct ∧Dt+1

)
= P

(
Ht+1 ≥ 2 ∧ Ht < 2

)
. Then we can

split this second probability according to the events Ht = 0 and Ht = 1. Noting that

P
(
Ht+1 ≥ 2 ∧ Ht = 0

)
= P

(
Ht = 0 ∧ Bt ≥ 2

)
,
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and

P
(
Ht+1 ≥ 2 ∧ Ht = 1

)
= P

(
St + Bt ≥ 2 ∧ St + Dt = 1

)

= P
(
St = 1 ∧ Bt ≥ 1 ∧ Dt = 0

)
+ P

(
St = 0 ∧ Bt ≥ 2 ∧ Dt = 1

)
,

the result follows from Proposition 2.5.6 and Corollary 2.5.7.

One of our main results concerns the expected time that the graph of walkers remains
(dis)connected, after a point in time at which it becomes (dis)connected. Define a discon-
nected period to be a maximal sequence of consecutive time steps for which the graph of
walkers G(Vt) is disconnected. Note that if a disconnected period starts at time step t,
then Lt(D) is the random variable counting the length of that disconnected period. By
Lemma 2.5.4, from a disconnected state the graph will always reach some connected one
within finite expected time (for example, one state in which all walkers occupy one of two
adjacent sites). Thus the expected length of any disconnected period is finite (but depend-
ing on N). Formally we define the average length of a disconnected period starting at time
t to be

LDav := E(Lt(D) | Ct−1 ∧Dt).

By interchanging the words ‘disconnected’ and ‘connected’ and also the events D and C in
the above definitions, we can define connected periods and also LCav. By symmetry, LDav

and LCav are independent of t, and so they are functions of N , d and w. The next result
finds their size.

Theorem 2.5.12. For the walkers model on the cycle CN , the average length of a connected
and a disconnected period of

(
G(Vt)

)
t∈Z

satisfy respectively

LCav ∼





21+µ
µ2 ̺−1 if ̺ = o(1),

1+µ
1+µ−(1+µ+λ+λ2)e−λ if ̺ = Θ(1),

eµ

eµ−(1+µ) if ̺ = ω(1)

and

LDav ∼





2eµ−1−µ
µ2 ̺−1 if ̺ = o(1),

eµ−1−µ
1+µ−(1+µ+λ+λ2)e−λ if ̺ = Θ(1),
eµ

1+µ if ̺ = ω(1),

where λ is defined as in Proposition 2.5.6.

Proof. Recall that a connected state is reached within finite expected time starting from
any given state, so E(L(D)) < +∞. Then in view of Lemma 2.5.10,

LDav = E(Lt(D) | Ct−1 ∧ Dt) =
P(D)

P(Ct−1 ∧ Dt)
,

and the asymptotic value of LDav follows from Corollary 2.6.7 and Lemma 2.5.11. The
computation of LCav is completely analogous.
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It is also interesting to ask how the average length of a (dis)connected period relates
to the initial configuration of the walkers (see the train paradox discussed earlier in this
subsection). As noted previously, if N is odd then M is ergodic and parity is immaterial.
However, if N is even and the initial configuration is conditioned upon, the (conditional)
average length of these periods may be different from LCav and LDav. For T ∈ Z

+, we
define the average disconnection time of the graph of walkers in [1, T ] to be

LDT =

T∑
t=1

Lt(D)

∣∣∣
{
t ∈ {1, . . . , T} : Lt(D) > 0

}∣∣∣
.

By changing D to C in the previous definition, we define LCT , the average connection time
of the graph of walkers in [1, T ]. We show that LCT and LDT converge in probability as
T → ∞ to a random variable which may depend on the class of the initial state, but nothing
else. (Actually, the value is in general different for different classes.) Define

LC∗ =
P(C | V)

P(Dt−1 ∧ Ct | V)
and LD∗ =

P(D | V)

P(Ct−1 ∧ Dt | V)
,

where V is the random variable accounting for the closed class in which the initial state V0

lies. The following is an analogue of Theorem 2.5.9.

Theorem 2.5.13. For the walkers model on CN , LDT converges in probability as T → ∞
(with N fixed) towards LD∗. Furthermore, as N → ∞, we have LD∗ ∼ LDav a.a.s. The
same statements hold changing D to C.

Proof. We define the truncated average disconnection time of the graph of walkers in [1, T ]
as

LDT =

∑T
t=1 1[Dt]∑T

t=1 1[Ct−1 ∧ Dt]
.

The same argument in the proof of Theorem 2.5.9, but replacing Ht with 1[Dt] and Bt with
1[Ct−1 ∧ Dt], yields the statement. The proof for LC∗ is completely analogous.

2.6 The Grid

In this section, we study the walkers model for MN = TN , the toroidal grid with N = n2

vertices. We can refer to vertices by using coordinates in Zn×Zn. For the grid we encounter
significant new obstacles as compared to the cycle; see for instance the Geometric Lemma
below.

For any p ∈ [1,∞] and any two vertices u and v in TN , we define the distance
distℓp(u, v) as the minimal ℓp distance between any two points u′ and v′ in the square grid
such that the coordinates of u′ are congruent to those of u taken modulo n, and similarly for
v and v′. Let us fix any such metric for our study of the connectedness of G(V), and write
dist(u, v) for short. We use dist(·, ·) to refer to this measure of distance, in distinguishing
it from Euclidean distance. Note that

1

2
· distℓ1(u, v) ≤ dist(u, v) ≤ distℓ1(u, v). (2.26)
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The number of vertices at distance at most d from any given one is h = Θ(d2). The exact
expression of h depends on the choice of the metric. Some examples are found in Table 2.2.

Observation 2.6.1. Assume that d < 2n (otherwise the graph of walkers is always complete).
For each i, j < 4n/d, let vij denote the vertex in TN with coordinates (⌊id/4⌋, ⌊jd/4⌋). Let
Sij denote the set of grid points closer to vij than any of the other vi′j′ . Then there are
Θ(N/d2) disjoint sets Sij each containing Θ(d2) points. The probability that at least one
of these Sij is empty of walkers is at most

Θ(N/d2)(1 − Θ(d2/N))w = O(
√

w)e−Ω(
√

w),

which goes to 0 if d2 = Ω(N/
√

w). Thus, a.a.s. each of these pieces is occupied by at least
one walker, and G(V) is connected.

In view of the observation, we assume for the rest of the section that h = o(N), i.e.
d = o(n). If d = Ω(n), then G(V) is a.a.s. connected.

Metric h

ℓ1 h = 2d(d + 1)
ℓ2 h ∼ πd2 if d → ∞
ℓ∞ h = 4d(d + 1)

Table 2.2: Number of vertices at distance at most d from a given vertex.

We wish to study the connection and disconnection of G(V) in a similar way to the
cycle. For the grid, the notion of hole does not help, and we deal directly with components.
Recall from the introduction that a simple component is one with just one vertex. These
play a major role, and we shall prove that, for the interesting values of the parameters,
a.a.s. there only exist simple components besides one giant one.

Let Γ be any given component. The edges of Γ are the straight edges joining occupied
vertices in Γ of distance at most d. The associated forbidden region AΓ is the set of vertices
not in Γ, but at distance at most d from some vertex in Γ (i.e. those vertices which must be
free of walkers for Γ to exist as a component). The exterior EΓ of Γ is the set containing all
those vertices not in Γ ∪ AΓ. We partition EΓ into external regions as follows: two vertices
belong to the same external region when they can be joined by a continuous curve not
intersecting any edge of Γ. Figure 2.7 shows a component with different external regions.

Recall that, in the terminology of planar maps, the bounding cycle of a face is a walk
around the boundary of the face. We say that it is positively oriented if the walk keeps
the face to the left. Given an external region E i

Γ, let Γ′ be any connected subgraph of Γ
that has no edges crossing and such that no vertices of Γ are contained in the face F of Γ′

which contains E i
Γ. Such subgraphs always exist: for instance, take the spanning tree of Γ

whose length (sum of lengths of edges) in terms of dist has been minimised, and, subject to
this, has the shortest Euclidean length. We refer to the positively oriented bounding cycle
of this face F as a boundary walk β in Γ with respect to E i

Γ. Such a walk is maximal if
the face F does not properly contain a face of some other subgraph of Γ of the same type.
In Figure 2.6, (1, 5, 3, 7, 9, 11, 13, 15, 13, 12, 14, 12, 10, 8, 6, 2, 4, 1) is a non-maximal boundary
walk, and (1, 5, 3, 7, 9, 11, 13, 15, 13, 14, 12, 10, 8, 6, 2, 4, 1) is a maximal one. A maximal one
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Figure 2.7: Component (black), forbidden region (gray), external regions A,
B and C (white)

always exists, because any non-maximal one can be diverted around any face that prevents
it from being maximal. Note each edge in a boundary walk, appears at most twice, once in

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.8: The boundary walk

each direction.

For i < n, let us call a v-band of width i to any subset of TN defined by {a, . . . , a +
i − 1} × Zn. Similarly, we define a h-band of height j. Define a rectangle of width i and
height j to be the intersection of a v-band of width i and a h-band of height j. We can
compare vertices in a rectangle according to their coordinates, and use statements such as
v1 is more left than v2 or v3 is an uppermost vertex in the rectangle.

We say that a component Γ with at least 2 vertices is embeddable if all of its vertices
are contained in a rectangle of width n − 2d and height n − 2d. In particular, this implies
that Γ contains no non-separating cycle of the torus. For a given embeddable component
Γ, we define its origin as the leftmost of the lower-most vertices of Γ. The outside region
of an embeddable component is the only external region of the component having vertices
outside any rectangle containing the component.

On the other hand, these components which are not embeddable wrap around the
torus, and must be large. In fact, each of such components must contain at least Θ(n/d)
vertices. Note that sometimes several non-embeddable components can coexist together.
However, there are some non-embeddable components which are so spread around the torus
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that do not allow any room for other non-embeddable ones. We call these components
solitary. Formally, a non-embeddable component is solitary if it is not the subgraph of
some graph of walkers containing more than one non-embeddable components. Note that
this property is simply determined by the subgraph of the toroidal grid remaining when
the component and the vertices of distance at most d from it are deleted. By definition
we can have at most one solitary component. We cannot disprove the existence of this
solitary component, since with probability 1− o(1) there exists one giant component of this
nature. For components which are not solitary (i.e., either embeddable or non-embeddable
but able to coexist with other non-embeddable ones), we will give asymptotic bounds on
the probability of their existence. We will show that, under certain conditions, they seldom
occur, so we just find a few simple components and a giant one which is solitary.

Let X, Y and Z be respectively: the number of simple components; the number of
embeddable components; and the number of non-embeddable components which are not
solitary.

2.6.1 Static Properties

In this subsection, we study the connectedness of G(V) in the static situation for the case
MN = TN ; in particular, we analyse the behaviour of X, Y and Z. To examine the
connectedness of G(V), we need to redefine the µ used for the cycle. For the remaining of
Section 2.6, let µ = N (1 − e−̺) e−h̺. Hence

µ ∼





we−h̺ if ̺ = o(1),

N (1 − e−̺) e−h̺ if ̺ = Θ(1),

Ne−h̺ if ̺ = ω(1).

We first characterise the number of simple components in terms of µ.

Proposition 2.6.2. The expected number of simple components of G(V) for TN satisfies

EX ∼ N
(
1 − e−̺

)(
1 − h

N

)w

.

Furthermore,

(i). if µ → 0 then EX → 0 and there are no simple components a.a.s.,

(ii). if µ → ∞ then there exist simple components a.a.s. (and G(V) is disconnected),

(iii). if µ = Θ(1) then X is asymptotically Poisson with mean µ.

Proof. We repeat the proof of Theorem 2.5.2 in the present context. To compute E[X]k,
we focus on the set T 1 = {(v1, . . . , vk)|dist(vi, vj) > 2d if i 6= j}, with size |T 1| ∼ Nk.
Applying Lemma 2.4.2, we obtain

E[X]k ∼
[
N
(
1 − e−̺

)
e−h̺+O(h2w/N2)

]k
. (2.27)

Comparing with (2.7), the rest of the proof is as for Theorem 2.5.2.
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From part (ii) of the proposition, if h̺ = O(1) then µ → ∞ and G(V) is disconnected
a.a.s. In view of this, we may restrict to the condition h̺ → ∞ in the study of embeddable
components and non-embeddable components which are not solitary.

Given a boundary walk β = (v1, . . . , vk) we define its length as the sum of the distances
(using the chosen metric) between consecutive vertices in β.

length(β) =
∑

1≤i<k

dist(vi, vi+1)

We shall write lengthℓp(β) when we want specify that we are measuring distances in ℓp.
Similarly we define lengthv(β) (the vertical length) as the sum of the differences between y
coordinates of consecutive vertices along the cycle, and lengthh(β) (the horizontal length)
using x coordinates in the same way.

The next lemma relates the size of the forbidden region outside a boundary cycle of a
component to the length of the cycle, and will play a key role in proving the main results.

Lemma 2.6.3 (Geometric Lemma). Let Γ be a component in TN with β one of its maximal
boundary walks, and l = length(β) its length. Assume that Γ has at least two occupied
sites. Then the size of the forbidden region Aβ outside β is bounded below by |Aβ| ≥ dl/J ,
for some sufficiently large constant J . Moreover, if Γ is rectangular, and β is a maximal
boundary walk with respect to the outside region, we have |Aβ| ≥ h + dl/J .

Proof. For convenience we take J = 1010, though probably without large modifications the
proof method will yield the result for J = 1000. Observe that in the 3× 3 subgrid centred
on the endpoint of an edge of β, there must be at least one vertex in the forbidden region
outside β; otherwise the boundary walk can be re-routed to contradict its maximality. Each
point of forbidden region can be counted in this way at most 8 times. Thus the forbidden
region has size at least l/(8d). This implies the first statement in the lemma provided that
8d2 ≤ 1010.

Throughout this proof, all distances referred to are measured using dist(·). For the
second statement in the lemma, we begin with the fact that for a rectangular component,
there are “caps” of empty region of size at least h/2−d on top and bottom of the component,
being the set of grid points within distance d, but above the leftmost point of Γ of greatest
vertical coordinate (or below the leftmost of least vertical coordinate). Without loss of
generality, we assume that the component has vertical height greater than 1 (otherwise, we
may interchange “vertical” and “horizontal”). Then there are also intervals of empty region
of length d projecting outwards from the left- and right-most vertices of the top level of
Γ. These caps and intervals account for an forbidden region of size h, but use up some of
the forbidden region counted in relation to ends of edges of β in the argument above. The
number of end-vertices of edges of β that are involved in the region of size h described is
at most 4d + 2 and there is still at least one end-vertex of an edge of β not involved (the
rightmost one in the bottom row of Γ, say — we cannot claim two vertices here because
it might be the same as the leftmost one) which means the above argument is valid if the
bound on the size of the forbidden region is reduced by a factor of 4d + 3. That is, the size
of the forbidden region is at least h + l/8d(4d + 3). So the second statement in the lemma
holds provided that 8d2(4d + 3) ≤ 1010. Hence we may now assume that d > 400.

Choose k = ⌈ d
100⌉. Then k ≤ (d + 99)/100 ≤ (d/100)(1 + 99/d) < d/80. Assume

without loss of generality that for the boundary walk β we have lengthv(β) ≥ length(β)/2.
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We place intervals of length k (note that all the ℓp metrics measure these intervals the
same) horizontally along all grid lines from a maximal boundary cycle towards the outside.
Those starting from a vertex of β point towards the outside according to the previous edge
of β. (We assume β is oriented in some direction.) We delete any intervals that touch the
boundary cycle in two or more places. Then each remaining interval will touch k vertices
of the forbidden region outside β, and each such vertex will be touched by at most two
different intervals. (Two intervals coming from opposite directions may touch the same
vertex.)

We need to bound the number of intervals which were deleted. Call an edge of Γ short
if the distance between its endpoints is less than d/4, and long otherwise. Suppose that an
interval (that is to be deleted) touches a short edge at a point E and a point F on another
edge of β, with the part between E and F in the exterior of β. Suppose that F has distance
at most d−d/4−k from both end-vertices of its edge. Then by the triangle inequality each
end-vertex (say P and Q) of that edge is of distance at most d from each end-vertex (R
and T ) of E’s edge. Thus the quadrilateral PQRT (or triangle, if two points coincide) has
diameter at most d, and thus the walk β can be changed to make a smaller face “outside”
(meaning the side which was minimised). This can clearly be done also if other parts of β
enter this quadrilateral, contradicting the maximality of β. Thus, F has distance at least
d− d/4− k > 2d/3 from one of the end-vertices of its edge. So F ’s edge is long, or, if F lies
on more than one edge, they are all long.

We call a middle interval any interval originating from a long edge from point at least
1/8 of the length of the edge from each end. Suppose that such a middle interval originating
at a point E (called a middle point), on edge e of β, is deleted. Then it hits some other edge
f at a point F of horizontal distance at most k from E. If f has an end-vertex of distance
less than d/8 − k ≥ d/8 − d/80 ≥ d/9 from F , we get a contradiction as above. Since e is
long, its end vertices have distance at least d/32 from E. Since e and f are straight, either
point on e of distance rd/32 from E, for any r > 0, has horizontal distance at most (r + 1)k
from f or the extension of f . (Furthermore, note for later that every pair of points on e and
f at the same vertical coordinate have distance at most 32k apart.) It follows that the end
vertices P and R of e and f above the line EF have distance less than d, as do the ends Q
and T below (or on) the line EF . If either P = R or Q = T we now obtain a contradiction
as before by re-routing β. A similar contradiction arises if either PT or QR has length at
most d. So, picturing e and f with the line EF as making a near-perfect but very thin “H”,
the distances along the H from P to T and from Q to R are both greater than d. Thus
the sum of lengths of e and f is at least 2d − 2k (since the edge EF is included twice in
these distances) and so each of e and f has length at least d − 2k, and the lengths of the
arms of e and f above EF differ by at most k (as for the arms below EF ). It follows that
both PR and QT have length at most 34k (recalling the observation above about horizontal
distance), which is at most d/2. Without loss of generality, PR is not an edge of β. This
again contradicts the choice of β, either by shortening it at PR or, if another edge of β
crosses PR, by joining P or R to an end of such an edge. We conclude that no middle
intervals are deleted. Moreover, this shows that the point F in the previous paragraph
cannot be a middle point. So every interval starting at a short edge that is deleted first
hits a non-middle points of a long edge. Such a point can be hit by only one interval from
a short edge unless it is a vertex of β, in which case it can be hit by two intervals. Thus
if i1 is the number of intervals starting at short edges that are deleted, j1 is the number
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of long edges of β, and j2 is the number of non-middle intervals originating at non-ends of
long intervals,

i1 ≤ 4j1 + j2.

Moreover, since no middle intervals are deleted, the number i2 of intervals originating on
long edges that are deleted similarly satisfies

i2 ≤ 4j1 + j2.

If j3 is the total number of intervals before any deletions occur, we clearly have

j2 ≤ j3/4

and also since long edges have length at least d/4,

j3 ≥ lengthv(β) ≥ length(β)/2 ≥ j1d/8. (2.28)

Combining these gives

i1 + i2 ≤ 8j1 + 2j2 ≤ j3

(
64

d
+

1

2

)
≤ 3j3/4

which shows that at least j3/4 of all the intervals are not deleted. These intervals each
cover k ≥ d/100 vertices of the forbidden region, at most two covering any one such vertex,
so the first part of the lemma follows for d > 400, using (2.28).

For the second claim of the lemma when d > 400, we may again add the caps of size
h − 2d but also two extra intervals of length d at the sides: assuming that β is oriented in
the clockwise direction, the intervals of length k projecting from the left-most vertex in the
bottom level of Γ, and from the right-most vertex in the top level, are not used. It is here
that extra intervals of empty region of length d may be found.

The next lemma will be used to show that non-embeddable components which are not
solitary are rare.

Lemma 2.6.4. Let Γ be a component which is not embeddable and not solitary either. Then
Γ has a maximal boundary walk β with length(β) ≥ n − o(n).

Proof. Let us divide TN into ⌊ n
d+1⌋ v-bands c1, . . . , c⌊ n

d+1
⌋ of width ≥ d + 1, and similarly

into ⌊ n
d+1⌋ h-bands r1, . . . , r⌊ n

d+1
⌋ of width ≥ d + 1.

Let Γ be a component which is not embeddable and not solitary either. Since Γ is
connected, the v-bands (or h-bands) not containing vertices of Γ must be consecutive. If
there were at least 2 consecutive v-bands and at least 2 consecutive h-bands without vertices
of Γ, then Γ would be embeddable since Γ would be contained in the complementary of the
v-bands and h-bands. Hence, at most one v-band and some consecutive h-bands (or at most
one h-band and some consecutive columns) may be without vertices of Γ. From the fact that
Γ is not solitary, let us assume that Γ coexists with another non-embeddable component Γ′.

Case 1. Let us suppose first that Γ has no vertices in more that one v-band or h-band
(v-band without loss of generality). Let c1, c2 be two consecutive v-bands not containing
vertices of Γ. Hence all h-bands, excepting at most one, contain vertices in Γ. For each
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such h-band ri, choose a vertex vi in Γ∩ ri. We can also find some vertex wi in (c1 ∪ c2)∩ ri

such that wi is at distance ≥ d+ 1 from any vertex in Γ. By this construction, all wi belong
to the same external region of the component. Let β be any maximal boundary walk of Γ
with respect to this external region. Then, the straight line joining vi and wi must intersect
an edge of β, part of the edge contained in ri. Hence, β crosses all h-bands except at most
3 and length(β) ≥ n − 4d − 3.

Case 2. On the other hand, let us suppose that Γ has vertices in all v-bands and h-bands
except for at most one of each. Without loss of generality, the other component, Γ′, has
vertices in all v-bands except for at most one. Thus, there are at least ⌊ n

d+1⌋−2 v-bands with
some vertices of both components. For each such v-band ci, let us take vertices vi ∈ Γ ∩ ci,
wi ∈ Γ′ ∩ ci and join them by a straight line. Notice that all the wi belong to the same
external region of Γ, and let β be any maximal boundary walk with respect to this region.
Then the line joining vi and wi must intersect an edge of β, part of the edge contained in
ci. Hence, β crosses all v-bands except at most 4 and length(β) ≥ n − 5d − 4.

The next technical result shows that simple components are predominant a.a.s. in TN .
The proof uses the Geometric Lemma.

Lemma 2.6.5. If h̺ → ∞, then EY = o(EX) and EZ = o(EX).

Proof. Let us first estimate the expected number EY of rectangular components with more
than one vertex.

Notice from (2.26) that the ℓ1-length of the edges of any boundary walk of a component
are integers between 1 and 2d.

Let B be the set of walks in TN which are (for some configuration of the walkers) a
maximal boundary walk of some embeddable component with respect to its outside region.
For each β ∈ B, choose a rooted spanning tree T (β) of the graph induced by the edges of
β. Note that given any such tree T of m vertices, we may recover β by joining certain pairs
of vertices (with no edges crossing). The edges added are just diagonals added to a face of
degree 2m − 2.

For each vertex v ∈ V , natural m ≥ 2 and tuple l = (l1, . . . , lm−1) of naturals
1 ≤ li ≤ 2d, let Bv,m,l be the set of all β ∈ B such that T (β) has m vertices, is rooted at
v and has edges of ℓ1-lengths l1, . . . , lm−1. The number of such trees is at most

∏m−1
j=1 16lj ,

where a factor 4m comes from the number of rooted plane trees, and each factor 4lj is the
number of vertices of ℓ1 distance lj from a given vertex. Therefore,

|Bv,m,l| ≤
m−1∏

j=1

Clj, (2.29)

where C is constant, and also clearly

EY ≤
∑

v∈V
m≥2

1≤l1,...,lm−1≤2d

∑

β∈Bv,m,l

P(Yβ = 1), (2.30)

where Yβ indicates the event of having some embeddable component with β being a maximal
boundary walk of the component with respect to its outside region.
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By Lemma 2.6.3, the size |Aβ| of the forbidden region outside β is an integer bounded
below by h + dl/J , where l = length(β). For technical purposes we consider a subset of
Aβ of size h + ⌈dl/(2J + 1)⌉, representing an region free of walkers. By Lemma 2.4.3, and
noting that α > 1/2 and hence p < 2̺, we obtain an upper bound for the probability of
this emptiness occurring and the m vertices in β being occupied. Since this is necessary for
the event Yβ to occur, we have

P(Yβ = 1) = O(1 − e−̺/α)(2̺)m−1

(
1 − S

N

)w

= O(1 − e−̺)(2̺)m−1

(
1 − h

N

)w

e−⌈dl/(2J+1)⌉̺ (2.31)

since α ≤ 1. Furthermore, let l′ = l1 + · · · + lm−1. Then since the spanning tree has length
no more than the length of β, lengthℓ1(β) > l′. By (2.26), we have l ≥ l′/2, and hence we
get

P(Yβ = 1) = O(1 − e−̺)(2̺)m−1

(
1 − h

N

)w

e−dl′̺/J ′

, (2.32)

where J ′ = 2(2J + 1).
From (2.30), (2.29) and (2.32), we get

EY = O(1)
∑

m≥2
1≤l1,...,lm−1≤2d

N




m−1∏

j=1

Clj


(1 − e−̺

)
(2̺)m−1

(
1 − h

N

)w

e−dl′̺/J ′

Therefore, using Proposition 2.6.2 for the asymptotic value of EX,

EY/EX = O(1)
∑

m≥2
1≤l1,...,lm−1≤2d




m−1∏

j=1

Clj


 (2̺)m−1e−dl′̺/J ′

= O(1)
∑

m≥2

(
C ′

d

2d∑

k=1

kd̺e−kd̺/J ′

)m−1

. (2.33)

In the case where d̺ → ∞, we have ̺e−c′d̺ = o(max(1, ̺)) = o(1) and hence EY = o(EX).
In the case where d̺ = O(1), we use

∑
k≥1 kc−ǫkd̺ = O((d̺)−2) and (2.33) gives

EY/EX = O(1)
∑

m≥2

(
C ′′

d2̺

)m−1

= O

(
1

log w

)
= o(1) as d2̺ → ∞.

To prove EZ = o(EX), from Lemma 2.6.4, each component counted by Z has some maximal
boundary walk β with length(β) ≥ n − o(n). If we apply Lemma 2.6.3 to this β, we
have |Aβ| ≥ ld/J , where l = length(β). Using d = o(n) (since h = o(N)), we have
|Aβ| ≥ h + ld/2J for large N , and we then proceed similarly as for Y .

Finally we derive the main result of this subsection.
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Theorem 2.6.6.

(i). For µ → ∞, G(V) is disconnected a.a.s.

(ii). For µ = Θ(1), a.a.s. all but one components of G(V) are simple, and the number X
of simple components is asymptotically Poisson with expected value µ.

(iii). For µ → 0, G(V) is connected a.a.s.

Proof. From Proposition 2.6.2, if µ → ∞, then G(V) is disconnected a.a.s. In the other two
cases, µ = O(1) and we must have h̺ → ∞. In this case we can apply Lemma 2.6.5, and
get

P(Y > 0) ≤ EY = o(EX) = o(1) and P(Z > 0) ≤ EZ = o(EX) = o(1).

Thus, a.a.s. we only have simple components and at most one solitary component. The rest
of the theorem follows from the asymptotic distribution of X given in Proposition 2.6.2.

The theorem immediately gives the following.

Corollary 2.6.7. P(G(V) is connected) = e−µ + o(1).

2.6.2 Dynamic Properties

According to the model, from an initial random placement of the walkers, at each step,
every walker moves from its current position to one of its neighbours, with probability 1/4
of going either way. This is a standard random walk on the grid for each walker. We wish
to study the connectivity properties of G(Vt). The analysis of the dynamic case is quite
similar to that of the cycle, so we state the major results, and point to the differing details
in the proofs.

We define states (or configurations) and the graph of configurations in an analogous
way to the cycle (see Subsection 2.5.2). In this case, there are Nw = n2w different con-
figurations of walkers, each one represented by a vector V = (v1, . . . , vw) ∈ (Zn × Zn)w

where vi = (vix, viy) indicates the label of the vertex being occupied by walker i. Given
a configuration V = (v1, . . . , vw), there exists an edge between V and all configurations
U = (u1, . . . , uw), such that dist(vi, ui) = 1 for all i ∈ {1, . . . , w}. Thus, any configuration
has 4w neighbours, and the relationship of being neighbours is symmetric. As in the case of
the cycle, the dynamic process can be seen as a random walk on the graph of configurations,
thus a Markov chain M = (Vt)t∈Z.

For N even, given any two configurations U and V, we say that they have the same
parity if for all i and j, (ui,x − uj,x)+(ui,y − uj,y) ≡ (vi,x − vj,x)+(vi,y − vj,y) mod 2. With
this definition of parity, Lemma 2.5.4 and its consequences also apply to the grid. Then,
if N is odd M is ergodic, and if N is even there are 2w−1 closed classes of states, where
each class consists on all configurations with the same parity. The Markov chain restricted
to any of these classes of states is irreducible, positive recurrent, but 2-periodic so we don’t
have ergodicity.

Observation 2.6.8. Using the same argument as in Observation 2.5.5, for any fixed t, we
can consider Vt as a static V.
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In view of this observation and Theorem 2.6.6, we assume µ = Θ(1) for the remaining
of the subsection. This covers the non-trivial dynamic situations where G(V) is neither a.a.s.
disconnected nor a.a.s. connected. Moreover in this subsection, we exclude the analysis for
the case d = 1, for technical reasons. Hence, assume hereinafter that d ≥ 2.

Let us first focus on the study of simple components. We define X = Xt to be the
random variable that counts the number of simple components at time step t. Given our
assumptions about µ, for t in any fixed bounded time interval, Xt is asymptotically Poisson
with expectation µ = Θ(1), as studied in Proposition 2.6.2.

In analogy with d-hole lines in Subsection 2.5.2, we define a simple component line to
be a maximal sequence of pairs (v1, t1), . . . , (vl, tl) where vi is a simple component existing
at time step ti for 1 ≤ i ≤ l, and such that ti = ti−1 + 1 and the vertex vi is adjacent to
vi−1, for 2 ≤ i ≤ l. Birth, death and survival of lines, and the random variables Bt, Dt and
St are defined analogously to the cycle case.

The following results will involve two consecutive time steps t and t + 1. As discussed
in Section 2.4, this can be modelled as an assignment of walkers into arcs in A = A(TN ).
We need some definitions: For each arc e = (v1, v2) ∈ A, define π1(e) = v1 and π2(e) = v2.
Note that for any set S of vertices Size(π−1

1 (S)) = Size(π−1
2 (S)) = Size(S). Given any

v ∈ V , let Hv be the set of vertices at distance between 1 and d from v. Observe that
Size(H)v = h. In addition, define Ĥv = π−1

1 (Hv) and Ĥ′
v = π−1

2 (Hv), i.e. the sets of arcs

with origin/destination in Hv. Finally, for each arc e = (v1, v2) ∈ A, let B̂e = Ĥ′
v2
\Ĥv1 and

B̂′
e = Ĥv1 \ Ĥ′

v2
. By symmetry, we have that Size(B̂e) = Size(B̂′

e) and this quantity does not
depend on the particular e, so let us denote it by b. In other words, b is the number of arcs
whose origin is a vertex at distance strictly greater than d from v1 and whose destination
is at distance at most d from v2. This new parameter turns out to play an important role
in the characterisation of the dynamic properties of the graph of walkers. We have that
b = Θ(d), but the exact expression of this b depends on the particular chosen metrics. Some
examples are found in Table 2.3.

Metrics b

ℓ1 b = 2d + 1/2

ℓp (p < ∞) b ∼
(
1/ p

√
2 + 3/2

)
d, if d → ∞

ℓ∞ b = 3d + 1

Table 2.3: Parameter b.

Here is a technical result

Lemma 2.6.9. There exists ǫ > 0 such that for any v1, v2 ∈ V (TN ) with dist(v1, v2) > d−2
we have Size(Ĥv1∪Ĥv2) ≥ (1+ǫ)h, Size(Ĥv1∪Ĥ′

v2
) ≥ (1+ǫ)h and Size(Ĥ′

v1
∪Ĥ′

v2
) ≥ (1+ǫ)h.

Proof. We prove Size(Ĥv1 ∪Ĥ′
v2

) ≥ (1+ ǫ)h. The other two bounds are verified analogously.
Suppose first that d > R, for some large enough but fixed R. Let S be set of vertices in Hv2

which are at distance at least d+2 from v1. Observe that Size(S) ≥ h/4 and that π−1
2 (S) and

Ĥv1 are disjoint. Then Size(Ĥv1 ∪Ĥv2) ≥ Size(Ĥv1 ∪π−1
2 (S)) = Size(Ĥv1) +Size(S) ≥ 5h/4.

Otherwise suppose that d ≤ R. Then h ≤ 10R2 for any ℓp distance we are considering.
Recall that d ≥ 2 so we can just guarantee that dist(v1, v2) > 0. Let v3 be the vertex in
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Hv2 which is at greatest distance from v1. At least one arc in π−1
2 (v3) must be in Ĥ′

v2
\Ĥv1 .

Then Size(Ĥv1 ∪ Ĥv2) ≥ h + 1 ≥ (1 + 1/(10R2))h.

To state the following result, we need one more definition: Given a collection of
events E1(N), . . . , Ek(N) and of random variables W1(N), . . . ,Wl(N) taking values in N,
with k and l fixed, we say that they are mutually asymptotically independent if for any
k′, l′, i1, . . . , ik′ , j1, . . . , jl′ , w1, . . . , wl′ ∈ N such that k′ ≤ k, l′ ≤ l, 1 ≤ i1 < · · · < ik′ ≤ k,
1 ≤ j1 < · · · < jl′ ≤ l we have that

P

(
k′∧

a=1

Eia ∧
l′∧

b=1

(Wjb
= wb)

)
∼

k′∏

a=1

P(Eia)
l′∏

b=1

P(Wjb
= wb). (2.34)

We next have a result analogous to Proposition 2.5.6.

Proposition 2.6.10. Assume µ = Θ(1). Then for any two consecutive steps,

ESt ∼





µ if d̺ = o(1),

µe−b̺ if d̺ = Θ(1),

41−e−̺/4

1−e−̺ e−(b+3/4)̺µ if d̺ = ω(1),

EBt = EDt ∼





b̺µ if d̺ = o(1),

µ
(
1 − e−b̺

)
if d̺ = Θ(1),

µ if d̺ = ω(1).

Moreover we have that

(i). If d̺ = o(1), then P(B > 0) ∼ EB; P(D > 0) ∼ ED; S is asymptotically Poisson;
and (B > 0), (D > 0) and S are asymptotically mutually independent.

(ii). If d̺ = Θ(1), then B, D and S are asymptotically mutually independent Poisson.

(iii). If d̺ = ω(1), then B and D are asymptotically Poisson; P(S > 0) ∼ ES; and B, D
and (S > 0) are asymptotically mutually independent.

Proof. The central ingredient in the proof is the computation of the joint factorial moments
E([S]ℓ1 [B]ℓ2[D]ℓ3) of these variables. In particular we find the asymptotic values of ES, EB
and ED. Moreover, In the case d̺ = Θ(1), we show that for any fixed naturals ℓ1, ℓ2 and
ℓ3 we have

E([S]ℓ1 [B]ℓ2 [D]ℓ3) ∼ (ES)ℓ1(EB)ℓ2(ED)ℓ3. (2.35)

Then, the result follows from Theorem 1.23 in [15]. The other cases are more delicate
since (2.35) does not always hold for extreme values of the parameters, and we obtain a
weaker result. In the case d̺ = o(1), we compute the moments for any natural ℓ1 but only
for ℓ2, ℓ3 ∈ {0, 1, 2} and obtain

E([S]ℓ1 [B]ℓ2 [D]ℓ3) ∼ (ES)ℓ1(EB)ℓ2(ED)ℓ3 , if ℓ2, ℓ3 < 2,

E([S]ℓ1 [B]2[D]ℓ3) = o(E([S]ℓ1B [D]ℓ3)),

E([S]ℓ1 [B]ℓ2 [D]2) = o(E([S]ℓ1 [B]2D)). (2.36)
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From this and by using upper and lower bounds given in [15], Section 1.4, applied to several
variables, we deduce that S, (B > 0) and (D > 0) satisfy (2.34) and also

P(S = k) ∼ e−ES (ES)k

k!
∀k ∈ N, P(B > 0) ∼ EB and P(D > 0) ∼ ED.

Similarly, in the case d̺ = ω(1), we compute the moments for any naturals ℓ2 and ℓ3 but
only for ℓ1 ∈ {0, 1, 2} and obtain

E([S]ℓ1 [B]ℓ2[D]ℓ3) ∼ (ES)ℓ1(EB)ℓ2(ED)ℓ3 , if ℓ1 < 2,

E([S]2[B]ℓ2[D]ℓ3) = o(E(S [B]ℓ2 [D]ℓ3)). (2.37)

From this and by using once more upper and lower bounds given in Section 1.4 of [15], we
conclude that (S > 0), B and D satisfy (2.34) and also

P(S > 0) ∼ ES, P(B = k) ∼ e−EB (EB)k

k!
∀k ∈ N

and P(D = k) ∼ e−ED (ED)k

k!
∀k ∈ N.

In order to compute the moments, we first describe the survivals, births and deaths of simple
components from a static point of view, in terms of occupancy of some regions (sets) of arcs
in A(TN ) by walkers. A summary of these descriptions is given in Table 2.4. Recall that we
are assuming that d ≥ 2. The case d = 1 is slightly different since one simple component
can split into four simple components in one step. This case is not covered here.

Let us first deal with survivals. A simple component on vertex v survives between
time steps t and t + 1 iff exactly one arc e = (v, v′) in π−1

1 (v) is occupied and Ĥv ∪ Ĥ′
v′ is

e.o.w. (as shown in Figure 2.9). Therefore, there are four ways to achieve this, one for each
choice of e.

Figure 2.9: Survival of a simple component line at vertex v

There are 15 ways that a simple component line can be born at v between time steps
t and t + 1. We classify these events in four main classes, as shown in Figure 2.10.

b1 There are four births which correspond to this class: Exactly one arc e′ = (u, v) in
π−1

2 (v) is occupied, B̂′
e′ is also occupied, and Ĥ′

v is e.o.w.
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b2 There are six births which correspond to this class: Exactly two arcs in π−1
2 (v) are

occupied, and Ĥ′
v is e.o.w.

b3 There are four births which correspond to this class: Exactly three arcs in π−1
2 (v) are

occupied, and Ĥ′
v is e.o.w.

b2 There is one birth which corresponds to this class: All arcs in π−1
2 (v) are occupied,

and Ĥ′
v is e.o.w.

b3 b4

b1 b2

Figure 2.10: Birth of a simple component line at vertex v

Similarly, there are 15 events (classified in four classes) leading to the destruction
of a simple component line at v, according to the following descriptions and as shown in
Figure 2.11:

d1 There are four destructions which correspond to this class: Exactly one arc e = (v, u)
in π−1

1 (v) is occupied, B̂e is also occupied, and Ĥv is e.o.w.

d2 There are six destructions which correspond to this class: Exactly two arcs in π−1
1 (v)

are occupied, and Ĥv is e.o.w.

d3 There are four destructions which correspond to this class: Exactly three arcs in
π−1

1 (v) are occupied, and Ĥv is e.o.w.
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d2 There is one destruction which corresponds to this class: All four arcs in π−1
1 (v) are

occupied, and Ĥv is e.o.w.

d3 d4

d1 d2

Figure 2.11: Destruction of a simple component line at vertex v

Given any v ∈ V (TN ), for each of the four possible ways that a simple component
line can survive at vertex v, we define the corresponding indicator random variable Sα

v ,
α ∈ {1, . . . , 4}. Similarly, for each of the 15 possible ways that a simple component line
can be born (die) at vertex v, we define the corresponding indicator random variable Bα

v

(Dα
v ), α ∈ {1, . . . , 15}. Hence, Sv =

∑4
α=1 Sα

v , Bv =
∑15

α=1 Bα
v and Dv =

∑15
α=1 Dα

v are the
indicator variables for a survival, birth and death, respectively, at vertex v.

Fix any naturals ℓ1, ℓ2 and ℓ3, and call ℓ = ℓ1 + ℓ2 + ℓ3. Let A =
(
{1, . . . , 4}

)ℓ1 ×(
{1, . . . , 15}

)ℓ2+ℓ3, and let T be the set of all ℓ-tuples of different vertices in V (TN ). Given
α = (αi)

ℓ
i=1 ∈ A, and v = (vi)

ℓ
i=1 ∈ T let us define the event

Eα,v =

( ℓ1∧

i=1

(Sαi
vi

= 1)

)
∧
( ℓ1+ℓ2∧

i=ℓ1+1

(Bαi
vi

= 1)

)
∧
( ℓ∧

i=ℓ1+ℓ2+1

(Dαi
vi

= 1)

)
. (2.38)

This allows us to express the joint factorial moments as

E([S]ℓ1 [B]ℓ2 [D]ℓ3) =
∑

v∈T

∑

α∈A

P(Eα,v). (2.39)
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Ways Size empty region Sizes non-empty regions

Survival 4 h + b + 3/4 1/4

Birth b1 4 h + 3/4 1/4, b
Birth b2 6 h + 1/2 2 × 1/4
Birth b3 4 h + 1/4 3 × 1/4
Birth b4 1 h 4 × 1/4

Death d1 4 h + 3/4 1/4, b
Death d2 6 h + 1/2 2 × 1/4
Death d3 4 h + 1/4 3 × 1/4
Death d4 1 h 4 × 1/4

Table 2.4: Event descriptions according to their occupancy requirements

In order to compute P(Eα,v), we partition the set of tuples T into three disjoint classes:
Let T 2 be the set of tuples v ∈ T such that all pairs of vertices in v are at distance greater
than 2d + 4; Let T 1 be the set of tuples v ∈ T \ T 2 such that all pairs of vertices in v are
at distance greater than d − 2; Finally, define T 0 = T \ (T 1 ∪ T 2).

First observe that if v ∈ T 0 then P(Eα,v) = 0, since some pair of different vertices in
v are at distance at most d−2 and this is not compatible with Eα,v. Now given any v ∈ T 2,
notice that the regions involved in the descriptions of the events (Sαi

vi
= 1), (Bαi

vi
= 1) and

(Dαi
vi

= 1) are disjoint for any choice of α. This allows us to compute P(Eα,v) by applying
Lemma 2.4.2 to these regions, whose sizes are listed in Table 2.4. For each j ∈ {1, . . . , 4},
let aj be the number of entries αi of α with ℓ1 + 1 ≤ i ≤ ℓ which correspond to births of
class bj or to deaths of class dj. Observe that P(Eα,v) does not depend on the particular
v ∈ T 2 or on the order of the entries of α, but only on a = (a1, a2, a3, a4). Hence we can
denote this probability by Pa, and it satisfies

Pa ∼ e−h̺ℓ
[(

1 − e−̺/4
)

e−(b+3/4)̺
]ℓ1

[(
1 − e−̺/4

)(
1 − e−b̺

)
e−3̺/4

]a1
[(

1 − e−̺/4
)2

e−̺/2

]a2

[(
1 − e−̺/4

)3
e−̺/4

]a3
[(

1 − e−̺/4
)4
]a4

. (2.40)

From this and also by using

∑

α

P(Eα,v) =
∑

a1+a2+a3+a4=ℓ2+ℓ3

(
ℓ2 + ℓ3

a1, a2, a3, a4

)
4q+a1+a36a2Pa,

we obtain the contribution to E([S]ℓ1 [B]ℓ2 [D]ℓ3) due to tuples in T 2

∑

v∈T 2

∑

α

P(Eα,v) ∼
((

1 − e−̺/4
)

Ne−h̺
)ℓ [

4e−(b+3/4)̺
]ℓ1

[
4
(

1 − e−b̺
)

e−3̺/4 + 6
(

1 − e−̺/4
)

e−̺/2+
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4
(

1 − e−̺/4
)2

e−̺/4 +
(

1 − e−̺/4
)3
]ℓ2+ℓ3

. (2.41)

Recall that the assumption µ = Θ(1) implies h̺ → ∞. Thus, in the cases when ̺ = O(1) we
must have d → ∞. Taking this into account, we get an equivalent but simpler asymptotic
expression to that in (2.41) by considering separately the cases in which ̺ and d̺ are o(1),
Θ(1) or ω(1).

∑

v∈T 2

∑

α

P(Eα,v) ∼
[

4
1 − e−̺/4

1 − e−̺
e−(b+3/4)̺µ

]ℓ1 [(
1 − e−b̺

)
µ
]ℓ2+ℓ3

. (2.42)

It just remains to bound the weight in E([S]ℓ1 [B]ℓ2[D]ℓ3) due to tuples in T 1. This contri-
bution is negligible in some cases, but unfortunately it may be larger than (2.42) for some
extreme values of the parameters. We analyse separate cases according to the asymptotic
behaviour of d̺.

Case 1 ( d̺ = Θ(1) ). Since ̺ = o(1), from (2.42) we can write

∑

v∈T 2

∑

α

P(Eα,v) ∼
[
e−b̺µ

]ℓ1 [(
1 − e−b̺

)
µ
]ℓ2+ℓ3

. (2.43)

Let us fix a tuple v ∈ T 1 and also α ∈ A. For each i, 1 ≤ i ≤ ℓ1, let ei = (vi, v
′
i) be the arc

involved in the description of Sαi
vi

. Then consider the set of arcs

Ĥ =

( ℓ1⋃

i=1

(Ĥvi ∪ Ĥ′
v′i

)

)
∪
( ℓ1+ℓ2⋃

i=ℓ1+1

Ĥ′
vi

)
∧
( ℓ∧

i=ℓ1+ℓ2+1

Ĥvi

)
.

Note that Eα,v implies that Ĥ is e.o.w. Unfortunately since v ∈ T 1 the sets of arcs involved

in the definition of Ĥ may not be disjoint. In order to bound Size(Ĥ) we need one definition:
We say that a given vertex vi of v is restricted if there is some other vj of v with j < i and
such that dist(vi, vj) ≤ 2d + 4. Let r be the number of restricted vertices of the tuple v,

and observe that r > 0 since v ∈ T 1. Then Size(Ĥ) ≥ (ℓ − r + ǫ)h, since each unrestricted
vertex contributes h to Ĥ and the first restricted one gives the term ǫh (see Lemma 2.6.9).
Therefore

P(Eα,v) ≤ (1 − Size(Ĥ))w
(

1 − e−̺/4
)ℓ

= O(e−(ℓ−r+ǫ)h̺̺ℓ) = O

(
wr−ǫ

N ℓ

)
.

But the number of choices for v with r restricted vertices is O(N ℓ−rhr), and this con-
tributes to E([S]ℓ1 [B]ℓ2 [D]ℓ3) only O((h̺)r/wǫ) = O(logr w/wǫ), which is negligible com-
pared to (2.43).

Case 2 ( d̺ = o(1) ). From (2.42) we can write

∑

v∈T 2

∑

α

P(Eα,v) ∼ µℓ1(b̺µ)ℓ2+ℓ3 . (2.44)

Let us fix a tuple v ∈ T 1 and also α ∈ A. Define Ĥ and restricted vertices as in the case
d̺ = Θ(1), and let r > 0 be the number of restricted vertices in v. Let v1 be the set of
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vertices in v which correspond to a birth or death of class b1 or d1 in the description of Eα,v,
and call v2 to the set of the remaining vertices in v not in v1. Recall that |v1| = a1 ≤ ℓ2+ℓ3.
For each vertex vi ∈ v1 which must undergo a birth according to Eα,v, let ei = (ui, vi) be the

arc involved in the description of Bαi
vi

and call B̂∗
vi

= B̂′
ei

. Similarly for each vertex vi ∈ v1

which corresponds to a death, let ei = (vi, ui) be the arc involved in the description of Dαi
vi

and call B̂∗
vi

= B̂ei . Note that Eα,v requires that B̂∗
vi

and ei are occupied for all vi ∈ v1. In
order to describe the different ways to achieve this, we need some definitions: Given some
vertices vi1 , . . . , vik in v1, we say that they interfere if

∧k
j=1 B̂∗

vij
6= ∅. Obviously, they must

be restricted except possibly for the one with smallest index. If ej ∈ B̂∗
vi

for some pair of
vertices vi, vj ∈ v1 we say that vi and vj collaborate. Notice that for vi, vj to collaborate,
either ℓ1 + 1 ≤ i, j ≤ ℓ1 + ℓ2 or ℓ1 + ℓ2 + 1 ≤ i, j ≤ ℓ. Moreover the one with highest
index is restricted. We first suppose that for our choice of v and α there are no vertices
in v1 which collaborate, and study only how Eα,v is affected by interferences of vertices.
Let P = P(α,v) be the set of all partitions of v1 into disjoint sets (called blocks) with
the following property: If P ∈ P then the vertices of each block of P interfere. Given
P = {P1, . . . , Pk} ∈ P and f1, . . . , fk different arcs in A(TN ) such that fj ∈

∧
vi∈Pj

B̂∗
vi

, we

define the following event Eα,v,P,f : All arcs in f = (f1, . . . , fk) are occupied, and moreover
Eα,v holds. Observe that Eα,v implies that Eα,v,P,f holds for some P and some f , so we
wish to compute P(Eα,v,P,f). Let us call leader to the vertex in each block Pj with smallest
index, and let r′ be the number of restricted vertices which are either leaders of some block
or belong to v \ v1. Then there are r = a1 − k + r′ > 0 restricted vertices and, by the same
argument as in the case d̺ = Θ(1), we deduce that Size(Ĥ) ≥ (ℓ−r+ǫ)h (see Lemma 2.6.9).
Therefore,

P(Eα,v,P,f) = O(e−(ℓ−r+ǫ)h̺̺ℓ+k+a2+2a3+3a4) = O

(
wr−ǫ

N ℓ
̺k+a2+2a3+3a4

)
.

Observe that if the values of a = (a1, a2, a3, a4), r and k are given, the number of
possible choices for α,v,P,f is O(N ℓ−rhr′ba1). Hence the contribution to E([S]ℓ1 [B]ℓ2 [D]ℓ3)
due to tuples v ∈ T 1 in which no pair of vertices collaborates and with these particular a,
r and k is

O(N ℓ−rhr′ba1)O

(
wr−ǫ

N ℓ
̺k+a2+2a3+3a4

)
= O

(
logr′ w

wǫ
(b̺)a1̺a2+2a3+3a4

)
,

negligible compared to (2.44). In particular, if ℓ2, ℓ3 < 2, then no pair of vertices in v1 can
collaborate and the first line in (2.36) follows from (2.39) and (2.44).

Finally we must deal with tuples v ∈ T 1 in which some pairs of vertices collaborate.
Unfortunately, the weight in (2.39) due to these terms is larger than (2.42) when d̺ tends
to 0 fast. Hence we restrict ℓ2 and ℓ3 to be at most 2 and prove only (2.36). Suppose that
ℓ2 = 2 and that v ∈ T 1 is such that vℓ1+1 and vℓ1+2 is the only pair which collaborates.
Then at least vℓ1+2 must be restricted. By repeating the same argument as above, but
considering partitions of v1 \{vℓ1+1, vℓ1+2} rather than v1 and taking into account that the
number of choices for vi and vj is O(bN), we deduce that the contribution of these tuples
to (2.39) is

O

(
(b̺)1+ℓ3

wǫ′

)
= o

(
(b̺)1+ℓ3

)
.
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Similarly, if ℓ3 = 2 the weight in (2.39) due to tuples v ∈ T 1 in which vℓ1+ℓ2+1 and vℓ is
the only pair which collaborates is o

(
(b̺)ℓ2+1

)
. Finally if ℓ2 = ℓ3 = 2, the tuples v ∈ T 1

in which both pairs vℓ1+1, vℓ1+2 and vℓ1+3, vℓ1+4 collaborate contribute o
(
(b̺)2

)
to (2.39).

In view of the above and also recalling the contribution to (2.39) due to tuples in T 2 and
tuples in T 1 with no collaborations, we obtain (2.36) as announced.

Case 3 ( d̺ = ω(1) ). From (2.42) we can write

∑

v∈T 2

∑

α

P(Eα,v) ∼
[

4
1 − e−̺/4

1 − e−̺
e−(b+3/4)̺µ

]ℓ1

µℓ2+ℓ3 . (2.45)

Let us fix a tuple v ∈ T 1 and also α ∈ A. Define Ĥ and restricted vertices as in the case
d̺ = Θ(1), and let r > 0 be the number of restricted vertices in v.

Suppose first that ℓ1 ≤ 1. In this case, the only possible vertex in v which involves a
survival in the description of Eα,v cannot be restricted by definition, since it has the lower

index. Then Size(Ĥ) ≥ (ℓ−r+ǫ)h+ℓ1(b+3/4), since the ℓ−r unrestricted vertex contribute
(ℓ− r)h + ℓ1(b + 3/4) to Ĥ and the first restricted one gives the term ǫh (see Lemma 2.6.9).
Therefore, proceeding as in the case d̺ = Θ(1) but keeping an extra e−ℓ1(b+3/4)̺ factor in
the computations, we conclude that the contribution to (2.39) due to tuples in T 1 with r
restricted vertices is O(e−ℓ1(b+3/4)̺ logr w/wǫ). This is negligible compared to (2.45). Hence
the first line in (2.37) follows from (2.39) and (2.45).

Otherwise consider the case ℓ1 = 2. Then we can only guarantee that Size(Ĥ) ≥
(ℓ−r+ǫ)h+(b+3/4), since v1 is not restricted but cannot say anything about v2. Repeating
again the same argument as in the case d̺ = Θ(1), we conclude that the contribution
to (2.39) in this case is O(e−(b+3/4)̺ logr w/wǫ). This is o

(
E(S [B]ℓ2 [D]ℓ3)

)
, and the second

line in (2.37) follows.

Lemma 2.6.11. Assume that µ = Θ(1) and d̺ = o(1). Then,

• P
(
(Yt + Zt = 0) ∧ (Yt+1 + Z2,t+1 > 0)

)
= o(d̺),

• P
(
(Yt + Zt > 0) ∧ (Bt > 0)

)
= o(d̺).

Proof. Rather than the first statement we prove its equivalent in the time-reversed process:
P
(
(Yt + Zt > 0) ∧ (Yt+1 + Zt+1 = 0)

)
= o(d̺).

Let B be the set of walks in TN which are (for some configuration of the walkers): a
maximal boundary walk of some embeddable component with respect to its outside region;
or a boundary walk of length at least n − o(n) of some non-embeddable component which
is not solitary (possible by Lemma 2.6.4). For each β ∈ B let Aβ be the forbidden region
outside β. Fix any arbitrary vertices u and v such that dist(u, v) ∈ {d − 1, d, d + 1, d + 2}.
Note that if u and v are occupied at time t this is a necessary condition for a creation or
destruction of an edge involving those vertices.

Let E1 be the following event: at time t there is some walk β ∈ B containing u and v
with all the vertices occupied, and moreover Aβ is e.o.w. To compute P(E1) we extend the
argument in the proof of Lemma 2.6.5 but taking into account that the position of u and v
is fixed. We obtain

P(E1) = O(1)
̺

N
e−d2̺/(2R′)

∑

m≥2

(
C ′′

d2̺

)m−2

= O
( ̺

Nwǫ

)
,
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for some ǫ > 0.
Let E2 be the following event: at time t there is some walk β ∈ B containing u but not

v with all the vertices occupied, v is also occupied, and moreover Aβ is e.o.w. We compute
P(E2) again by extending the argument in the proof of Lemma 2.6.5 but taking into account
that the position of u is fixed. We obtain

P(E1) = O(1)
̺

N

∑

m≥2

(
C ′′

d2̺

)m−1

= O

(
̺

N log w

)
.

Let R be the constant in the statement of Lemma 2.6.3. Let E3 be the following
event: at time t there is some walk β ∈ B of length at least 3Rh/d not containing u and
v with all the vertices occupied, u and v are also occupied, and moreover Aβ is e.o.w. In
view of Lemma 2.6.3, Aβ ≥ 2h + dl/3R. Hence by repeating the argument in the proof of
Lemma 2.6.5 but keeping an extra e−h̺ factor, we deduce that

P(E3) = O(1)̺2e−h̺
∑

m≥2

(
C ′′

d2̺

)m−1

= O

(
̺

N log w

)
.

Let E4 be the following event: at time t there is some walk β ∈ B of length at most
3Rh/d with all the vertices occupied, u and v are at distance greater than 2d + 4 from the
minimal rectangle containing β, u and v are also occupied, u is isolated, and moreover Aβ

is e.o.w. Observe that the conditions on β are asymptotically independent from those on u
and v since when describing them in terms of occupancy of regions of vertices, the regions
involved are pairwise disjoint. Hence

P(E4) = O(1)̺2e−h̺
∑

m≥2

(
C ′′

d2̺

)m−1

= O

(
̺

N log w

)
.

Let E5 be the following event: at time t there is some walk β ∈ B of length at most
3Rh/d of size at least 3 not containing u and v with all the vertices occupied, u and v are
at inside or at distance at most 2d + 4 from the minimal rectangle containing β, u and v
are also occupied, and moreover Aβ is e.o.w. Note that if length(β) ≤ 3Rh/d, this minimal
rectangle has size Θ(d2) and therefore

P(E5) = O(1)̺2 d2

N

∑

m≥3

(
C ′′

d2̺

)m−1

= O

(
̺

N log w

)
.

Let E6 be the following event: at time t there is some walk β ∈ B of size 2 not
containing u and v at distance at most 2d+ 4 from u with all the vertices occupied, u and v
are also occupied, u is isolated, and moreover Aβ is e.o.w. Observe that at least ǫh vertices
in Hu do not intersect Aβ, for some ǫ > 0 and must be e.o.w. Then We have

P(E6) = O(1)̺2e−ǫh̺ d2

N

(
C ′′

d2̺

)
= O

( ̺

Nwǫ

)
.

Now observe that (Yt + Zt > 0)∧ (Yt+1 + Zt+1 = 0) implies that E1, E2, E3 or E4 holds
for some u and v. Similarly (Yt + Zt > 0) ∧ (Bt > 0) implies that E1, E2, E3, E4, E5 or E6

holds for some u and v. Hence both events have probability O(Nd)o(̺/N) = o(d̺).
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From Proposition 2.6.10, we can easily derive important consequences analogous to
those of the cycle, always under the assumption stated after Observation 2.6.8. The first
one gives us the probability that G(Vt) is connected but G(Vt+1) is disconnected. The proof
is not so easy as that of Lemma 2.5.11. Let Ct and Dt the events that G(Vt) is respectively
connected and disconnected.

Lemma 2.6.12. Assume that µ = Θ(1). Then,

P(Ct ∧ Dt+1) ∼ e−µ(1 − e−EB), P(Dt ∧ Ct+1) ∼ e−µ(1 − e−EB)

P(Ct ∧ Ct+1) ∼ e−µe−EB , P(Dt ∧Dt+1) ∼ 1 − 2e−µ + e−µe−EB

Proof. First observe that Xt = St + Dt and Xt+1 = St + Bt. Therefore we have

P(Xt = 0 ∧ Xt+1 > 0) = P(St = 0 ∧ Dt = 0 ∧ Bt > 0),

and by Proposition 2.6.10 we get

P(Xt = 0 ∧ Xt+1 > 0) ∼ e−ES−ED(1 − e−EB) ∼ e−µ(1 − e−EB). (2.46)

We want to connect this probability with P(Ct ∧ Dt+1). In fact, by partitioning (Xt =
0 ∧ Xt+1 > 0) and (Ct ∧ Dt+1) into disjoint events, we obtain

P(Xt = 0 ∧ Xt+1 > 0) = P(Ct ∧ Xt+1 > 0) + P(Dt ∧ Xt = 0 ∧ Xt+1 > 0),

P(Ct ∧ Dt+1) = P(Ct ∧ Xt+1 > 0) + P(Ct ∧Dt+1 ∧ Xt+1 = 0),

and thus we can write

P(Ct ∧Dt+1) = P(Xt = 0 ∧ Xt+1 > 0) + P1 − P2, (2.47)

where P1 = P(Ct ∧ Dt+1 ∧ Xt+1 = 0) and P2 = P(Dt ∧ Xt = 0 ∧ Xt+1 > 0).
Now suppose that d̺ = o(1). In that case, P(Xt = 0∧Xt+1 > 0) = Θ(d̺) (see (2.46)

and Proposition 2.6.10). Also observe that D ∧ (X = 0) implies that Y + Z2 > 0. In fact,
we must have at least two components of size greater than 1, so at least one of these must
contribute to Y or Z2. Then, we have that P1 ≤ P(Yt + Zt = 0 ∧ Yt+1 + Z2,t+1 > 0) and
P2 ≤ P(Yt + Zt > 0 ∧ Bt > 0), and from Lemma 2.6.11 we get

P1, P2 = o
(
P(Xt = 0 ∧ Xt+1 > 0)

)
. (2.48)

Otherwise if d̺ = Ω(1), then P(Xt = 0 ∧ Xt+1 > 0) = Θ(1). In this case, we simply use
the fact that P1 ≤ P(Yt+1 + Z2,t+1 > 0) = o(1) and P2 ≤ P(Yt + Zt > 0) = o(1) (see
Theorem 2.6.6 and Observation 2.6.8), and deduce that (2.48) also holds.

Finally, the asymptotic expression of P(Ct ∧ Dt+1) is obtained from (2.46), (2.47)
and (2.48). Moreover, by considering the time-reversed process, we deduce that P(Dt ∧
Ct+1) = P(Ct ∧ Dt+1). The remaining probabilities in the statement are computed from
Corollary 2.6.7 and Observation 2.6.8, and using the fact that

P(Ct ∧ Ct+1) = P(Ct) − P(Ct ∧ Dt+1),

P(Dt ∧ Dt+1) = P(Dt) − P(Dt ∧ Ct+1).
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In a similar way to the cycle case, we define the lifespan of a simple component line
as the number of time steps for which the line is alive. For any vertex v and time step
t, consider the random variable Lv,t defined as follows: If at time step t + 1 there is a
simple component at v, then Lv,t is the number of time steps (possibly infinity) that the
corresponding simple component line stays alive starting from time step t + 1; Otherwise,
Lv,t is defined to be 0. So if a birth takes place at vertex v precisely between time steps t
and t + 1, then Lv,t corresponds to the lifespan of the simple component line being born.

Define Lav (the average lifespan of simple component lines), LT and L∗ as in Subsec-
tion 2.5.2 but in terms of the new definition of Lv,t. See also the train paradox discussed
in that subsection. The next result characterises the average lifespan of simple component
lines and how it relates to the initial configuration of walkers.

Theorem 2.6.13. For the walkers model on TN ,

Lav ∼





1
b̺ if d̺ = o(1),

µ

µ(1−e−b̺)
if d̺ = Θ(1),

1 if d̺ = ω(1).

Furthermore, LT converges in probability for T growing large (N fixed) towards L∗, where
L∗ ∼ Lav a.a.s.

Proof. The argument used for Theorem 2.5.8 can be adapted by replacing H with X, and
we get

Lav =
EX

EB
.

Then the first part of the theorem follows from Theorem 2.6.6 and Proposition 2.6.10. The
proof of the second part is analogous to that of Theorem 2.5.9, also changing H for X.

Our final result provides the expected time that the graph of walkers remains con-
nected or disconnected, after the point in time that it becomes so. Define (dis)connected
periods, LCav, LCT , LC∗, LDav, LDT and LD∗ as in Subsection 2.5.2.

Theorem 2.6.14. For the walkers model on TN , the average length of a connected and a
disconnected period of

(
G(Vt)

)
t∈Z

satisfy respectively

LCav ∼





1
µb̺ if d̺ = o(1),

1

1−e
−µ(1−e−b̺)

if d̺ = Θ(1),

1
1−e−µ if d̺ = ω(1)

and

LDav ∼





eµ−1
µb̺ if d̺ = o(1),

eµ−1

1−e
−µ(1−e−b̺)

if d̺ = Θ(1),

eµ if d̺ = ω(1).

Furthermore, LCT (LDT ) converges in probability for T growing large (N fixed) towards
LC∗ (LD∗), where LC∗ ∼ LCav a.a.s. and LD∗ ∼ LDav a.a.s.

Proof. We repeat the same arguments as those in the proofs of Theorems 2.5.12 and 2.5.13.
We require the asymptotic values of P(C), P(D), P(Ct ∧Dt+1) and P(Dt ∧Ct+1), which are
obtained from Corollary 2.6.7 and Lemma 2.6.12
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2.7 Empirical Analysis for the Grid

In the present section we empirically validate the asymptotics results previously obtained
in this chapter, for grids of reasonable size. In particular, for the static case we, deal with
grids of size N = 1000 × 1000, N = 3000 × 3000 and N = 10000 × 10000. For the dynamic
case, the size is N = 1000×1000. The experiments show that, in most cases, the behaviour
of the model is not far from the theoretical predictions in the limit. This study is restricted
to the ℓ1-normed distance case, and thus we have h = 2d(d + 1).

2.7.1 Static Properties

The results in Subsection 2.6.1, provide a sharp characterisation of the connectedness of
G(V) in terms of µ = N (1 − e−̺) e−h̺, and show the existence of a phase transition when
µ = Θ(1). At this point, there is a Poisson number of simple components, and the remaining
walkers belong to one single giant component. From Theorem 2.6.6, the relationship between
w and h (or d) at the connectivity threshold can be easily computed. Observe that if we set
µ = Θ(1), then having a large amount of walkers at the threshold requires having a small
h and vice versa. For instance, some usual situations can be summarised in the following
result.

Proposition 2.7.1. In the case that µ = Θ(1), we have that

(i). h = Θ(1) iff w = Θ(N log N),

(ii). h = Θ(log N) iff w = Θ(N),

(iii). h = Θ(N c) iff w = Θ(N1−c log N), for 0 < c ≤ 1,

(iv). h = Θ( N
log N ) iff w = Θ(log N log log N).

Proof. If we apply logarithms to µ = N (1 − e−̺) e−h̺, we obtain that log N(1 − e−̺) =
h̺+Θ(1). Then the proof is immediate from elementary computations, taking into account
the initial restrictions imposed to w and h.

Now, we test experimentally the asymptotic relations in Proposition 2.7.1 for some
interesting values of N which may arise in real life. We deal with grids of sizes N = 10002,
30002 and 100002, and study each case for d ranging from a constant to a function growing
large slightly slower than n. For each pair N , d, we choose the amount of walkers w that
makes µ = log 2. (Since w must be an integer, we choose the closest one.) A summary of
these parameters can be found in Table 2.5.

Note that we are demanding µ = log 2 because the condition µ = Θ(1) is purely
asymptotic and makes no sense for fixed values of N . The reason for the choice of this
particular value is that, according to the theoretical results, the number of simple compo-
nents when µ = log 2 should be roughly Poisson with expectation log 2. This makes the
probability of G(V) being connected (or disconnected) be around 1/2.

For each triple of parameters N , w and d described in Table 2.5, we experimentally
place w walkers u.a.r. on a grid of size N , check whether G(V) is connected or not, and
count the number of occupied vertices, the number of components, the size of the biggest
component and the average size of the remaining ones. This experiment is independently



2.7 Empirical Analysis for the Grid 93

N = 1000 × 1000 N = 3000 × 3000 N = 10000 × 10000

d constant d = 3 d = 3 d = 3
w = 555377 w = 5866110 w = 75639720

d = log n d = 7 d = 8 d = 9
w = 106128 w = 875018 w = 9079434

d = n1/3 d = 10 d = 14 d = 22
w = 50804 w = 275985 w = 1436466

d = n1/2 d = 32 d = 55 d = 100
w = 4113 w = 14538 w = 55931

d = n2/3 d = 100 d = 208 d = 464
w = 301 w = 719 w = 1825

d = n/ log n d = 145 d = 375 d = 1086
w = 122 w = 177 w = 249

Table 2.5: Parameters at the phase transition (µ = log 2).

repeated 100 times and we take averages of the observed magnitudes. Then we compare
the obtained data with what we would expect to get according to the theoretical results,
which is listed in Table 2.6.

Occupied vertices N(1 − e−̺)

Probability that G(V) is connected e−µ

Number of components 1 + µ

Size of the biggest component N(1 − e−̺) − µ

Average size of the other components 1

Table 2.6: Asymptotic expected values for N growing large.

For each particular run of our experiments, our algorithm must assign at random grid
coordinates (i, j) to each walker. It is convenient to store this data in a Hashing table of
size w instead of using a n × n table in order to optimise space resources. By doing this
we don’t loose much time efficiency, since the cost of checking whether a given vertex is
occupied remains constant in expectation. We use then a Depth-First-Search to find all
components. The whole algorithm takes expected time Θ(wh), since for each walker we
examine all the grid positions within distance d, and requires space Θ(w). Moreover since
µ = Θ(1), we have wh ∼ N log w, and then the time complexity is roughly proportional to
N apart from logarithmic factors.

Tables 2.7, 2.8 and 2.9 contrast the averages of the experimental results with the
asymptotic expected values (see Table 2.6) for the selected parameters.

What we described so far accounts for the situation at the phase transition. However,
we also want to verify experimentally that there is indeed a phase transition. We consider
only the case N = 3000 × 3000 and deal with the same types of d as before: d = constant,
d = log n, d = n1/3, d = n1/2, d = n2/3 and d = n/ log n. For each d, we consider
10 equidistant values for w, ranging between w0/5 and 2w0, where w0 is the amount of
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walkers needed to have µ = log 2 (see Table 2.5). (As before, all these quantities are
rounded to the nearest integer.) For each triple of parameters N , w and d, we sample again
100 independent random instances of G(V) and check whether they are connected. The
probability of connectivity can be estimated from the ratio between connected outputs and
the total number of trials.

Since we are just concerned with connectivity, we can slightly modify our previous
algorithm to improve time performance. Given a random arrangement of walkers in the grid
TN stored as before in a Hashing table, we first examine the existence of simple components.
We run along the table and, for each unmarked walker, we look for another walker within
distance d and mark both as “not in a simple component”. If we detect a simple component,
we stop and output disconnected. Otherwise, we perform as before a Depth-First-Search
to find all components. In the worst case, the algorithm has the same complexity as the
previous one, but if G(V) has some simple components, we may be lucky and have a quick
output. This proves quite useful for our particular kind of graphs since simple components
are very common.

The plots in Figures 2.12, 2.13 and 2.14 show for each grid of size N and distance
d, the evolution of the probability that G(V) is connected as we increase the amount of
walkers. The dots correspond to the experimental values we obtained. In contrast, the
curves show the theoretical value of this probability according to Subsection 2.6.1. This is
asymptotically e−µ, where the expression of µ is given in Theorem 2.6.6.

We used for the tests the joint effort of 10 computers in the MALLBA cluster at LSI
with the following power:

• Processor: AMD K6(tm) 3D processor (450 MHz)

• Main memory: 256 Mb
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Figure 2.12: Threshold of connectivity.

Conclusions for the Static Case Experiments

Our experimental results show that the qualitative behaviour of the walkers model sticks
reasonably well to the theoretical predictions. In fact, we observe a clear threshold phe-
nomenon on the connectivity property even though in some cases the observed critical point
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Figure 2.13: Threshold of connectivity.
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Figure 2.14: Threshold of connectivity.

is slightly displaced from its theoretical location. Furthermore, at the phase transition, we
observed that there is indeed one giant component consisting of the vast majority of walkers,
and a few small components (not far from being simple in most cases).

From a quantitative point of view, the accuracy of our predictions is dramatically
better for small d. This is probably due to the fact that, at the phase transition, a smaller
distance d requires a bigger amount of walkers w, and we recall that the asymptotic results
in Subsection 2.6.1 require w → ∞ as a regularity condition. For instance, in our last case
where d = n/ log n, the corresponding w is essentially logarithmic on N . Then, we may
need to consider exponentially huge grid sizes in order to have a big amount of walkers and
get reliable predictions.

Strangely enough, for the cases we considered, the accuracy of the predictions does
not seem to improve significantly as we increase the grid size N from 106 to 108. Possibly
the improvement is too small to be detected within the precision of our experiments. We
could always perform more trials for each test, or we could even consider much bigger values
of N , but this last is beyond our current computational means.
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2.7.2 Dynamic Properties

In this subsection we experimentally check the validity of the asymptotic results in Theo-
rem 2.6.14 in Subsection 2.6.2 for grids of size N = 1000×1000. We consider the parameters
d and w listed in Table 2.5.

For each triple N , w and d, we experimentally place the walkers on the grid u.a.r. as
in the static situation, but then we perform T dynamic steps, for some big enough chosen T .
We examine the connectivity of G(Vt) at each time step, measure the length of the different
periods we encounter in which G(Vt) is (dis)connected, and then take the average. This
accounts for the average connection time LCT and the average disconnection time LDT of(
G(Vt)

)
t∈Z

between times 1 and T . We repeat this experiment independently 50 times and
take the average of the averages. We choose T to be about 500 times the final value we
expect to get. In our cases, this ranges from 1000 to 20000 depending on the parameters
N , w and d (see last column in Table 2.10).

Our algorithm is an easy extension of the one used for the static situation. For each
walker we choose its grid coordinates at random and store them in a Hashing table of size
w. To perform a dynamic transition, we just need to run along the walkers and move each
one to any of the 4 neighbouring grid positions with equal probability. This has expected
time complexity of Θ(w) since the expected time for search, insertion and removal in the
table is constant. In addition, we must look at the connectivity at each time step, and the
same observations we made in Subsection 2.7.1 apply here. It is of great help checking the
existence of simple components first, since it is usually much faster, and it is a sufficient
condition for non-connectivity. Hence, the algorithm requires space Θ(w) and takes time
O(Twh), but it usually runs much faster at the steps when G(Vt) is disconnected.

We used the same machines and system of computation as for the static case, and the
results are summarised in Table 2.10.

Conclusions for the Dynamic Case Experiments

The experimental values obtained for LCT and LDT are in all cases of roughly the same
order of magnitude as the values predicted by the theoretical model. However, the level
of accuracy is much higher for the smaller values of d and gets poorer for the largest d’s,
exactly as in the static situation. Again the reason may be that in these last cases, the
considered amount of walkers w is quite small, while in Subsection 2.6.1 w is required to
grow to infinity.

We observe as well that the average length of the disconnected periods is larger than
that of the connected periods and it is much closer to the predicted value. Here is a plausible
explanation to this: We were studying situations where ideally, in the limit, there should be
one giant component and an average of µ = log 2 small (indeed simple) components. In this
case the probability of connectivity would be P(C) = e−µ = 1/2, and moreover we would
have

LCT =
1

1 − e−µ(1−e−b̺)
=

eµ − 1

1 − e−µ(1−e−b̺)
= LDT .

But as shown in Figures 2.12, 2.13 and 2.14 the real observed probability of connectivity is
mostly below the theoretical predictions at the limit, and this fact is stressed for the largest
values of d. This is the same as saying that the phase transition occurs slightly afterwards
for the observed cases than in the theoretical limit, or equivalently that the observed amount
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of non-giant components is slightly bigger than what we would asymptotically expect. This
explains why in our experiments LCT < LDT .

We note that this deviation between the observed number of non-giant components
and µ, gets amplified in the expressions of LCT and LDT since µ appears there exponentially.
So let’s try the following: let us use the average number of non-giant components we
observed (see Table 2.7) as the value of µ in the expressions in Theorem 2.6.14. Then, in
Table 2.11 we compare the obtained values with our observations. The new predictions turn
out to be much closer to the experimental quantities.

This gives reasonable evidence for the validity of Theorem 2.6.14, but also restricts
its applicability to the cases where the number of non-giant components is close to the
expected number µ of simple components in the limit.

2.8 Conclusions and Open Problems

In this work we have characterised connectivity issues of a very large set of moving agents,
which move through a prescribed real or virtual graph. We believe it is the first time that
these kind of characterisations have been obtained, and it could open a interesting line of
research. We gave characterisations for the cycle and the grid. The results obtained for
the grid could easily be extended to the grid with diagonals. Also, an approach similar
to ours should work with the k-dimensional toroidal grid, but a suitable substitute for the
Geometric Lemma needs to be found.

In our model we use a fixed number w of walkers. One could alternatively place walkers
randomly so that each vertex is occupied independently with probability p. For example,
they could be Poissonly distributed at each vertex, with parameter λ such that 1−e−λ = p.
In the static case these would bear a similar relation to our model as between the random
graph models G(n,m) and G(n, p), and as for that case, one would expect similar properties
when p is approximately w/N (or, more precisely, 1 − e−w/N to capture the case that w
is close to or greater than N). This would simplify some of our analysis (e.g. the proof
of Lemma 2.4.2). However, it would be difficult to deduce all the results for our model in
such a way. For one thing, some of the properties we study are not convex in the required
sense (see [46]). There are also other obstacles to using models with independent occupancy
probabilities. For instance, if w(s0/N)2 6= o(1) then (1−S0/N))w as in Lemma 2.4.2 is not
asymptotic to e−S0̺.

Further work is the extension of the results presented for the cycle and the toroidal
grid to other families of graphs, not necessarily to model realistic networks. One interesting
case is the n-dimensional hypercube of N = 2n vertices, as the number of neighbours of a
vertex is not constant. Another further project is to study the connectivity of walkers when
the underlying topology has obstacles which can interfere with communication.
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N = 1000 × 1000 Experimental Theoretical
average value

Occupied vertices 426140.57 426144.12
d = 3 Prob. of connectivity 0.54 0.50

Number of components 1.68 1.69
w = 555377 Size of the biggest comp. 426139.80 426143.43

Av. size of other comp. 1.14 1

Occupied vertices 100674.83 100690.47
d = 7 Prob. of connectivity 0.40 0.50

Number of components 1.89 1.69
w = 106128 Size of the biggest comp. 100673.72 100689.78

Av. size of other comp. 1.23 1

Occupied vertices 49533.84 49535.06
d = 10 Prob. of connectivity 0.39 0.50

Number of components 1.95 1.69
w = 50804 Size of the biggest comp. 49532.60 49534.36

Av. size of other comp. 1.31 1

Occupied vertices 4104.37 4104.55
d = 32 Prob. of connectivity 0.37 0.50

Number of components 1.97 1.69
w = 4113 Size of the biggest comp. 4102.96 4103.86

Av. size of other comp. 1.53 1

Occupied vertices 301.00 300.95
d = 100 Prob. of connectivity 0.36 0.50

Number of components 2.16 1.69
w = 301 Size of the biggest comp. 298.52 300.27

Av. size of other comp. 2.02 1

Occupied vertices 122.00 121.99
d = 145 Prob. of connectivity 0.19 0.50

Number of components 2.38 1.69
w = 122 Size of the biggest comp. 118.05 121.30

Av. size of other comp. 2.69 1

Table 2.7: Contrasted results at the phase transition for N = 1000 × 1000.
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N = 3000 × 3000 Experimental Theoretical
average value

Occupied vertices 4309968.88 4309990.64
d = 3 Prob. of connectivity 0.49 0.50

Number of components 1.67 1.69
w = 5866110 Size of the biggest comp. 4309968.18 4309989.95

Av. size of other comp. 1.05 1

Occupied vertices 833825.19 833827.19
d = 8 Prob. of connectivity 0.37 0.50

Number of components 1.87 1.69
w = 875018 Size of the biggest comp. 833824.16 833826.49

Av. size of other comp. 1.22 1

Occupied vertices 271795.67 271796.38
d = 14 Prob. of connectivity 0.39 0.5

Number of components 1.86 1.69
w = 275985 Size of the biggest comp. 271794.6 271795.69

Av. size of other comp. 1.25 1

Occupied vertices 14525.60 14526.26
d = 55 Prob. of connectivity 0.41 0.5

Number of components 1.86 1.69
w = 14538 Size of the biggest comp. 14524.48 14525.57

Av. size of other comp. 1.34 1

Occupied vertices 718.97 718.97
d = 208 Prob. of connectivity 0.29 0.50

Number of components 2.10 1.69
w = 719 Size of the biggest comp. 717.16 718.28

Av. size of other comp. 1.58 1

Occupied vertices 176.99 177.00
d = 375 Prob. of connectivity 0.28 0.50

Number of components 2.29 1.69
w = 177 Size of the biggest comp. 174.20 176.31

Av. size of other comp. 1.98 1

Table 2.8: Contrasted results at the phase transition for N = 3000 × 3000.
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N = 10000 × 10000 Experimental Theoretical
average value

Occupied vertices 8679487.90 8679449.86
d = 9 Prob. of connectivity 0.52 0.5

Number of components 1.71 1.69
w = 9079434 Size of the biggest comp. 8679487.05 8679449.16

Av. size of other comp. 1.23 1

Occupied vertices 1426204.88 1426198.05
d = 22 Prob. of connectivity 0.40 0.50

Number of components 1.89 1.69
w = 1436466 Size of the biggest comp. 1426203.82 1426197.36

Av. size of other comp. 1.19 1

Occupied vertices 55915.73 55915.36
d = 100 Prob. of connectivity 0.38 0.50

Number of components 1.97 1.69
w = 55931 Size of the biggest comp. 55914.51 55914.67

Av. size of other comp. 1.3 1

Occupied vertices 1824.97 1824.98
d = 464 Prob. of connectivity 0.37 0.50

Number of components 2.04 1.69
w = 1825 Size of the biggest comp. 1823.39 1824.29

Av. size of other comp. 1.48 1

Occupied vertices 249.00 249.00
d = 1086 Prob. of connectivity 0.33 0.50

Number of components 2.23 1.70
w = 249 Size of the biggest comp. 246.25 248.30

Av. size of other comp. 2.32 1

Table 2.9: Contrasted results at the phase transition for N = 10000 × 10000.
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N = 1000 × 1000 Experimental average Theoretical expectation

d = 3 LCT 1.93 2.05
w = 555377 LDT 2.14 2.05

d = 7 LCT 2.05 2.41
w = 106128 LDT 2.70 2.41

d = 10 LCT 2.28 2.79
w = 50804 LDT 3.17 2.79

d = 32 LCT 4.89 6.75
w = 4113 LDT 7.56 6.75

d = 100 LCT 14.14 25.36
w = 301 LDT 27.86 25.13

d = 145 LCT 18.97 41.80
w = 122 LDT 55.20 42.09

Table 2.10: Contrasted results for the dynamic process (N = 1000 × 1000).

N = 1000 × 1000 Experimental average Modified prediction

d = 3 LCT 1.93 2.08
w = 555377 LDT 2.14 2.02

d = 7 LCT 2.05 2.01
w = 106128 LDT 2.70 2.88

d = 10 LCT 2.28 2.20
w = 50804 LDT 3.17 2.49

d = 32 LCT 4.89 4.97
w = 4113 LDT 7.56 8.15

d = 100 LCT 14.14 15.26
w = 301 LDT 27.86 33.42

d = 145 LCT 18.97 21.35
w = 122 LDT 55.20 63.51

Table 2.11: New predictions, using the observed average number of non-giant
components instead of µ.
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Dynamic Random Geometric

Graphs

3.1 Introduction

In the present chapter, we study the evolution of connectivity of a random geometric graph
over the unit torus [0, 1)2 as the vertices, also denoted agents, move randomly around. In
particular, starting from a given random geometric graph, where the radius r is the known
connectivity threshold rc (see Section 3.2), each agent chooses independently and uniformly
at random an angle α ∈ [0, 2π), and moves a distance s in that direction for a period of m
steps. Then a new angle is selected independently for each agent, and the process repeats. In
the literature, this mobility model is denoted as the random walk model [38, 47]. Our main
result is that we provide precise asymptotic results for the expected number of steps that the
graph remains connected once it becomes connected, and the expected number of steps the
graph remains disconnected once it becomes disconnected. These expressions will be given
as a function of the number of vertices n, the number of steps in the same direction m and
the step size s. As it will be indicated in Section 3.3, the proof techniques will be different for
different sizes s of basic step. In addition, for the static model of random geometric graphs
where the radius r is the known connectivity threshold, we provide asymptotic bounds on the
probability of occurrence of components according to their sizes. All the computations were
made using the usual Euclidean distance in the torus, but similar results can be obtained
for any ℓp-normed distance, 1 ≤ p ≤ ∞, with the only prize of changing a constant factor
in the expressions. Moreover, our results also can be extended to any d-dimensional unit
torus of bounded dimension.
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3.2 Static Properties

We first state some of the known results about static random geometric graphs, which will
be the starting point to derive our results. We refer to [66] for further detail.

Given a set of n agents and a positive real r = r(n), each agent is placed at some
random position in the unit torus [0, 1)2 selected independently and u.a.r. Throughout the
chapter, we denote by Xi = (xi, yi) the random position of agent i for i ∈ {1, . . . , n}, and
let X = X (n) =

⋃n
i=1{Xi}. We note that with probability 1 no two agents choose the same

position and thus we restrict the attention to the case that |X | = n. We define G(X ; r)
as the random graph having X as the vertex set, and with an edge connecting each pair
of vertices Xi and Xj in X at distance d(Xi,Xj) ≤ r, where d(·, ·) denotes the Euclidean
distance in the torus.

d(X,Y ) = min{||X − Y + Z|| : Z ∈ Z
2}, ∀X,Y ∈ [0, 1)2

Unless otherwise stated, all our stated results are asymptotic as n → ∞. We assume
hereinafter that r = o(1). Otherwise a Balls and Bins argument shows that G(X ; r) is
trivially a.a.s. connected.

Let K1 be the random variable counting the number of isolated vertices in G(X ; r).
Then, by multiplying the probability that one vertex is isolated by the number of vertices
we obtain

Lemma 3.2.1. EK1 = n(1 − πr2)n−1 = ne−πr2n−O(r4n).

Define µ = ne−πr2n. Observe from Lemma 3.2.1 that this parameter µ is closely
related to EK1. More precisely, µ = o(1) iff EK1 = o(1), and if µ = Ω(1) then EK1 ∼ µ.
Moreover the asymptotic behaviour of µ characterises the connectivity of G(X ; r). In fact
(see [64, 65]),

Theorem 3.2.2.

• If µ → 0, then a.a.s. G(X ; r) is connected.

• If µ = Θ(1), then a.a.s. G(X ; r) consists of one giant component of size > n/2 and a
Poisson number (with parameter µ) of isolated vertices.

• If µ → ∞, then a.a.s. G(X ; r) is disconnected.

From the definition of µ we deduce that µ = Θ(1) iff r =

√
log n±O(1)

πn . Therefore

as a weaker consequence we conclude that the property of connectivity of G(X ; r) exhibits

a sharp threshold at rc =
√

log n
πn . Theorem 3.2.2 also implies that, if µ = Θ(1), the

components of size 1 (i.e. isolated vertices) are predominant and have the main contribution
to the connectivity of G(X ; r). In fact if C (respectively D) denotes the event that G(X ; r)
is connected (respectively disconnected), we have the following

Corollary 3.2.3. Assume that µ = Θ(1). Then

P(C) ∼ P(K1 = 0) ∼ e−µ, P(D) ∼ P(K1 > 0) ∼ 1 − e−µ.
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Observe that we used the fact that, if µ = Θ(1), the probability that G(X ; r) has some
component of size greater than 1 other than the giant component is o(1). We give more
accurate bounds on this probability. Moreover we characterise the probability of having
components of any fixed size. Before stating this more precisely we need some definitions.

Given a component Γ of G(X ; r), we say that Γ is embeddable if it is contained in
some square with sides parallel to the axes of the torus and length 1 − 2r. In other words,
Γ is embeddable if it can be mapped into the square [r, 1 − r]2 by a translation in the
torus. Embeddable components do not wrap around the torus. Throughout the chapter,
in all geometrical descriptions involving an embeddable component Γ, we assume that Γ
is contained in [r, 1 − r]2 and regard the torus [0, 1)2 as the unit square and d(·, ·) as the
usual Euclidean distance. This assumption is often not explicitly mentioned. Hence terms
as “left”, “right”, “above” and “below” are globally defined.

On the other hand, components which are not embeddable must have size at least
Ω(1/r). Note that sometimes several non-embeddable components can coexist together
(see Figure 3.1). However, there are some non-embeddable components which are so spread
around the torus that do not allow any room for other non-embeddable ones. We call these
components solitary, and by definition we can have at most one solitary component. We
cannot disprove the existence of this solitary component, since with probability 1 − o(1)
there exists one giant component of this nature. For components which are not solitary

Figure 3.1: Non-embeddable components on the unit torus; to the left two non-
embeddable and non-solitary components (one with shaded background), to the
right a solitary non-embeddable and an embeddable component (the latter with

shaded background)

(i.e., either embeddable or non-embeddable but able to coexist with other non-embeddable
ones), we give asymptotic bounds on the probability of their existence according to their
size.

Given a fixed integer ℓ ≥ 1, let Kℓ be the number of components in G(X ; r) of size
exactly ℓ. For large enough n, we can assume these components to be embeddable, since
r = o(1). Moreover, for any fixed ǫ > 0, let K ′

ǫ,ℓ be the number of components of size exactly
ℓ which have all their vertices at distance at most ǫr from their leftmost one. Finally, let
K̃ℓ denote the number of components of size at least ℓ which are not solitary. Figure 3.2
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Γ

ǫr

Figure 3.2: A component Γ of size exactly ℓ = 9 and with its vertices at
distance at most ǫr from the leftmost one

shows an example of a component that contributes to K ′
ǫ,9.

Notice that K ′
ǫ,ℓ ≤ Kℓ ≤ K̃ℓ. However, in the following results we show that asymp-

totically all the weight in the probability that K̃ℓ > 0 comes from components which also
contribute to K ′

ǫ,ℓ for ǫ arbitrarily small. This means that the more common components
of size at least ℓ are cliques of size exactly ℓ with all their vertices close together.

Lemma 3.2.4. Let ℓ ≥ 2 be a fixed integer, and 0 < ǫ < 1/2 also fixed. Assume that
µ = Θ(1). Then,

EK ′
ǫ,ℓ = Θ(1/ logℓ−1 n)

Proof. First observe that with probability 1, for each component Γ which contributes to
K ′

ǫ,ℓ, Γ has a unique leftmost vertex Xi and the vertex Xj in Γ at greatest distance from
Xi is also unique. Hence, we can restrict our attention to this case.

Fix an arbitrary set of indices J ⊂ {1, . . . , n} of size |J | = ℓ, with two distinguished
elements i and j. Denote by Y =

⋃
k∈J Xk the set of random points in X with indices in J .

Let E be the following event: All vertices in Y are at distance at most ǫr from Xi and to
the right of Xi; vertex Xj is the one in Y with greatest distance from Xi; and the vertices
of Y form a component of G(X ; r). If P(E) is multiplied by the number of possible choices
of i, j and the remaining ℓ − 2 elements of J , we get

EK ′
ǫ,ℓ = n(n − 1)

(
n − 2

ℓ − 2

)
P(E). (3.1)

In order to bound the probability of E we need some definitions. Let ρ = d(Xi,Xj)
and let S be the set of all points in the torus [0, 1)2 which are at distance at most r from
some vertex in Y (see Figure 3.3 for an example). Note that ρ and S depend on the set
of random points Y. We first need bounds on Area(S) in terms of ρ. Observe that S is
contained in the circle of radius r + ρ and centre Xi, and then

Area(S) ≤ π(r + ρ)2. (3.2)

Now let iL = i, iR, iT and iB be respectively the indices of the leftmost, rightmost, topmost
and bottommost vertices in Y (some of these indices possibly equal). Assume w.l.o.g. that
the vertical length of Y (i.e., the vertical distance between XiT and XiB) is at least ρ/

√
2.

Otherwise, the horizontal length of Y has this property and we can rotate the descriptions
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Figure 3.3: The set S for the component Γ of Figure 3.2

in the argument. The upper half-circle with centre XiT and the lower half-circle with centre
XiB are disjoint and are contained in S. If XiR is at greater vertical distance from XiT than
from XiB , then consider the rectangle of height ρ/(2

√
2) and width r − ρ/(2

√
2) with one

corner on XiR and above and to the right of XiR . Otherwise, consider the same rectangle
below and to the right of XiR . This rectangle is also contained in S and its interior does not
intersect the previously described half-circles. Analogously, we can find another rectangle
with the same properties of height ρ/(2

√
2) and width r − ρ/(2

√
2), to the left of XiL and

either above or below XiL . Hence,

Area(S) ≥ πr2 + 2

(
ρ

2
√

2

)(
r − ρ

2
√

2

)
. (3.3)

Figure 3.4 illustrates the bounds on Area(S) obtained in (3.2) and (3.3). From (3.2), (3.3)
and the fact that ρ < r/2, we can write

πr2

(
1 +

1

6

ρ

r

)
< Area(S) < πr2

(
1 +

5

2

ρ

r

)
<

9π

4
r2. (3.4)

Now consider the probability P that the n − ℓ vertices not in Y lie outside S. Then
P = (1−Area(S))n−ℓ. Moreover, by (3.4) and using the fact that e−x−x2 ≤ 1−x ≤ e−x for
all x ∈ [0, 1/2], we obtain

e−(1+5ρ/(2r))πr2n−(9πr2/4)2n < P <
e−(1+ρ/(6r))πr2n

(1 − 9πr2/4)ℓ
,

and after a few manipulations

(µ

n

)1+5ρ/(2r)
e−(9πr2/4)2n < P <

(µ

n

)1+ρ/(6r) 1

(1 − 9πr2/4)ℓ
. (3.5)

Event E can also be described as follows: There is some non-negative real ρ ≤ ǫr such
that Xj is placed at distance ρ from Xi and to the right of Xi; all the remaining vertices
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Figure 3.4: Bounds on Area(S)

in Y are inside the half-circle of centre Xi and radius ρ; and the n − ℓ vertices not in Y lie
outside S. Hence, P(E) can be bounded from above (below) by integrating with respect
to ρ the probability density function of d(Xi,Xj) times the probability that the remaining
ℓ − 2 selected vertices lie inside the right half-circle of centre Xi and radius ρ times the
upper (lower) bound on P we obtained in (3.5):

Θ(1) I(5/2) ≤ P(E) ≤ Θ(1) I(1/6), (3.6)

where

I(β) =

∫ ǫr

0
πρ
(π

2
ρ2
)ℓ−2 1

n1+βρ/r
dρ.

=
2

n

(π

2
r2
)ℓ−1

∫ ǫ

0
x2ℓ−3n−βx dx (3.7)

Since ℓ is fixed, for β = 5/2 or β = 1/6,

I(β) = Θ

(
logℓ−1 n

nℓ

)∫ ǫ

0
x2ℓ−3n−βx dx

= Θ

(
logℓ−1 n

nℓ

)
(2ℓ − 3)!

(β log n)2ℓ−2

= Θ

(
1

nℓ logℓ−1 n

)
, (3.8)

and the statement follows from (3.1), (3.6) and (3.8).

Next, we bound the probability of having non-solitary components of size at least
ℓ ≥ 2 which are not ℓ-cliques of small diameter.
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Lemma 3.2.5. Let ℓ ≥ 2 be a fixed integer. Let ǫ > 0 be also fixed. Assume that µ = Θ(1).
Then

P(K̃ℓ − K ′
ǫ,ℓ > 0) = O(1/ logℓ n).

Proof. We assume throughout this proof that ǫ ≤ 10−18, and prove the claim for this case.
The case ǫ > 10−18 follows from the fact that (K̃ℓ − K ′

ǫ,ℓ) ≤ (K̃ℓ − K ′
10−18,ℓ).

Consider all the possible components in G(X ; r) which are not solitary. Remove from
these components the ones of size at most ℓ and diameter at most ǫr, and denote by M
the number of remaining components. By construction K̃ℓ − K ′

ǫ,ℓ ≤ M , and therefore it

is sufficient to prove that P(M > 0) = O(1/ logℓ n). The components counted by M are
classified into several types, according to their size and diameter. We deal with each type
separately.

Part 1. Consider all the possible components in G(X ; r) which have diameter at most ǫr
and size between ℓ + 1 and log n/37. Call them components of type 1, and let M1 denote
their number.

For each k, ℓ + 1 ≤ k ≤ log n/37, let Ek be the expected number of components of
type 1 and size k. We observe that these components have all of their vertices at distance
at most ǫr from the leftmost one. Therefore, we can apply the same argument we used for
bounding EK ′

ǫ,ℓ in the proof of Lemma 3.2.4. Note that (3.1), (3.6) and (3.7) are also valid
for sizes not fixed but depending on n. Thus we obtain

Ek ≤ O(1)n(n − 1)

(
n − 2

k − 2

)
I(1/6),

where I(1/6) is defined in (3.7). We use the fact that
(n−2
k−2

)
≤ ( ne

k−2)k−2 and get

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2 ∫ ǫ

0
x2k−3n−x/6 dx (3.9)

The expression x2k−3n−x/6 can be maximised for x ∈ R
+ by elementary techniques, and we

deduce that

x2k−3n−x/6 ≤
(

2k − 3

(e/6) log n

)2k−3

.

Then we can bound the integral in (3.9) and get

Ek = O(1) log n

(
e

2

log n

k − 2

)k−2

ǫ

(
2k − 3

(e/6) log n

)2k−3

= O(1)k

(
36

2e

(2k − 3)2

(k − 2) log n

)k−2

.

Note that for k ≤ log n/37 the expression k
(

36
2e

(2k−3)2

(k−2) log n

)k−2
is decreasing with respect to

k. Hence we can write

Ek = O

(
1

logℓ+1 n

)
, ∀k : ℓ + 3 ≤ k ≤ 1

37
log n.
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y

2y

Figure 3.5: The tessellation for counting components of type 2 with two par-
ticular boxes shaded.

Moreover the bounds Eℓ+1 = O(1/ logℓ n) and Eℓ+2 = O(1/ logℓ+1 n) are obtained from
Lemma 3.2.4, and hence

EM1 =

1

37
log n∑

k=ℓ+1

Ek = O

(
1

logℓ n

)
+ O

(
1

logℓ+1 n

)
+

log n

37
O

(
1

logℓ+1 n

)
= O

(
1

logℓ n

)
,

so that P(M1 > 0) ≤ EM1 = O(1/ logℓ n).

Part 2. Consider all the possible components in G(X ; r) which have diameter at most ǫr
and size greater than log n/37. Call them components of type 2, and let M2 denote their
number.

We tessellate the torus with square cells of side y = ⌊(ǫr)−1⌋−1 with y ≥ ǫr but also
y ∼ ǫr. We define a box to be a square of side 2y consisting of the union of 4 cells of the
tessellation. Consider the set of all possible boxes. Note that any component of type 2 must
be fully contained in some box. (see Figure 3.5).

Let us fix a box b. Let W be the number of vertices which are deployed inside b.
Clearly W has a binomial distribution with mean EW = (2y)2n ∼ (2ǫ)2 log n/π. By setting
δ = log n

37EW − 1 and applying Chernoff inequality to W , we have

P(W >
1

37
log n) = P(W > (1 + δ)EW ) ≤

(
eδ

(1 + δ)1+δ

)EW

= n−
(log(1+δ)− δ

1+δ
)

37 .

Note that δ ∼ π
148ǫ2 − 1 > e79, and therefore

P(W >
1

37
log n) < n−2.1.

Then taking a union bound over the set of all Θ(r−1) = Θ(n/ log n) boxes, the probability
that there is some box with more than 1

37 log n vertices is O(1/(n1.1 log n)). Since each
component of type 2 is contained in some box, we have

P(M2 > 0) = O(1/(n1.1 log n)).

Part 3. Consider all the possible components in G(X ; r) which are embeddable and have
diameter at least ǫr. Call them components of type 3, and let M3 denote their number.
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We tessellate the torus into square cells of side αr, for some α = α(ǫ) > 0 fixed but
small enough. The required α will be specified later in the argument. Let Γ be a component
of type 3. Let S = SΓ be the set of all points in the torus [0, 1)2 which are at distance at
most r from some vertex in Γ. Remove from S the vertices of Γ and the edges (represented
by straight segments) and denote by S ′ the outer connected topological component of the
remaining set. By construction, S ′ must contain no vertex in X (see Figure 3.6, left picture).

Figure 3.6: The tessellation for counting components of type 3

Now let iL, iR, iT and iB be respectively the indices of the leftmost, rightmost, topmost
and bottommost vertices in Γ. Some of these indices are possibly equal. Assume w.l.o.g.
that the vertical length of Γ (i.e. the vertical distance between XiT and XiB) is at least
ǫr/

√
2. Otherwise, the horizontal length of Γ has this property and we can rotate the

descriptions in the argument. The upper half-circle with centre XiT and the lower half-
circle with centre XiB are disjoint and are contained in S ′. If XiR is at greater vertical
distanc(i.e., the vertical distance between XiT and XiB) e from XiT thanrom XiB , then
consider the rectangle of height ǫr/(2

√
2) and width r − ǫr/(2

√
2) with one corner on XiR

and above and to the right of XiR . Otherwise, consider the same rectangle below and to
the right of XiR . This rectangle is also contained in S ′ and its interior does not intersect
the previously described half-circles. Analogously, we can find another rectangle of height
ǫr/(2

√
2) and width r − ǫr/(2

√
2) to the left of XiL and either above or below XiL with the

same properties. Hence, taking into account that ǫ ≤ 10−18, we have

Area(S ′) ≥ πr2 + 2

(
ǫr

2
√

2

)(
r − ǫr

2
√

2

)
>
(

1 +
ǫ

5

)
πr2. (3.10)

Let S∗ be the union of all the cells in the tessellation which are fully contained in S ′. We
loose a bit of area compared to S ′. However, if α was chosen small enough, we can guarantee
that S∗ is topologically connected and has area Area(S∗) ≥ (1 + ǫ/6)πr2. This α can be
chosen to be the same for all components of type 3.

Hence, we showed that the event (M3 > 0) implies that some connected union of cells
S∗ of area Area(S∗) ≥ (1 + ǫ/6)πr2 contains no vertices. By removing some cells from S∗,
we can assume that (1 + ǫ/6)πr2 ≤ Area(S∗) < (1 + ǫ/6)πr2 + α2r2. Let S∗ be any union
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of cells with these properties. Note that there are Θ(1/r2) = Θ(n/ log n) many possible
choices for S∗. The probability that S∗ contains no vertices is

(1 − Area(S∗))n ≤ e−(1+ǫ/6)πr2n =
(µ

n

)1+ǫ/6
.

Therefore, we can take the union bound over all the Θ(n/ log n) possible sets S∗, and obtain
an upper bound of the probability that there is some component of the type 3:

P(M3 > 0) ≤ Θ

(
n

log n

)(µ

n

)1+ǫ/6
= Θ

(
1

nǫ/6 log n

)
.

Part 4. Consider all the possible components in G(X ; r) which are not embeddable and not
solitary either. Call them components of type 4, and let M4 denote their number.

We tessellate the torus [0, 1)2 into Θ(n/ log n) small square cells of side length αr,
where α > 0 is a sufficiently small positive constant. The required α will be specified later
in the argument.

Let Γ be a component of type 4. Let S = SΓ be the set of all points in the torus [0, 1)2

which are at distance at most r from some vertex in Γ. Remove from S the vertices of Γ
and the edges (represented by straight segments) and denote by S ′ the remaining set. By
construction, S ′ must contain no vertex in X .

Suppose there is a horizontal or a vertical band of width 2r in [0, 1)2 which does not
intersect the component Γ. Assume w.l.o.g. that it is the topmost horizontal band consisting
of all points with the y-coordinate in [1− 2r, 1). Let us divide the torus into vertical bands
of width 2r. All of them must contain at least one vertex of Γ, since otherwise Γ would be
embeddable. Select any 9 consecutive vertical bands and pick one vertex of Γ with maximal
y-coordinate in each one. For each one of these 9 vertices, we select the left upper quarter-
circle centred at the vertex if the vertex is closer to the right side of the band or the right
upper quarter-circle otherwise. These nine quarter-circles are disjoint and must contain no
vertices by construction. Moreover, they belong to the same connected component of the
set S ′, which we denote by S ′′, and which has an area of Area(S ′′) ≥ (9/4)πr2. Let S∗ be
the union of all the cells in the tessellation of the torus which are completely contained in
S ′′. We lose a bit of area compared to S ′′. However, as usual, by choosing α small enough
we can guarantee that S∗ is connected and it has an area of Area(S∗) ≥ (11/5)πr2. Note
that this α can be chosen to be the same for all components Γ of this kind.

Suppose otherwise that all horizontal and vertical bands of width 2r in [0, 1)2 contain
at least one vertex of Γ. Since Γ is not solitary it must be possible that it coexists with
some other non-embeddable component Γ′. Then all vertical bands or all horizontal bands
of width 2r must also contain some vertex of Γ′. Assume w.l.o.g. the vertical bands do.
Let us divide the torus into vertical bands of width 2r. We can find a simple path Π with
vertices in Γ′ which passes through 11 consecutive bands. For each one of the 9 internal
bands, pick the uppermost vertex of Γ in the band below Π (in the torus sense). As before
each one of these vertices contributes with a disjoint quarter-circle which must be empty of
vertices, and by the same argument we obtain a connected union of cells of the tessellation,
which we denote by S∗, with Area(S∗) ≥ (11/5)πr2 and containing no vertices.

Hence, we showed that the event (M4 > 0) implies that some connected union of cells
S∗ with Area(S∗) ≥ (11/5)πr2 contains no vertices. By repeating the same argument we
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used for components of type 3, but replacing (1 + ǫ/6)πr2 by (11/5)πr2, we get

P(M4 > 0) = Θ

(
1

n6/5 log n

)
.

Lemma 3.2.6. Let ℓ ≥ 2 be a fixed integer. Let 0 < ǫ < 1/2 be fixed. Assume that
µ = Θ(1). Then

E[K ′
ǫ,ℓ]2 = O(1/ log2ℓ−2 n).

Proof. As in the proof of Lemma 3.2.4, we assume that each component Γ which contributes
to K ′

ǫ,ℓ has a unique leftmost vertex Xi, and the vertex Xj in Γ at greatest distance from
Xi is also unique. In fact, this happens with probability 1.

Choose any two disjoint subsets of {1, . . . , n} of size ℓ each, namely J1 and J2, with four
distinguished elements i1, j1 ∈ J1 and i2, j2 ∈ J2. For k ∈ {1, 2}, denote by Yk =

⋃
l∈Jk

Xl

the set of random points in X with indices in Jk. Let E be the event that the following
conditions hold for both k = 1 and k = 2: All vertices in Yk are at distance at most ǫr from
Xik and to the right of Xik ; vertex Xjk

is the one in Yk with greatest distance from Xik ;
and the vertices of Yk form a component of G(X ; r). If P(E) is multiplied by the number
of possible choices of ik, jk and the remaining vertices of Jk, we get

E[K ′
ǫ,ℓ]2 = O(n2ℓ)P(E). (3.11)

In order to bound the probability of E we need some definitions. For each k ∈ {1, 2},
let ρk = d(Xik ,Xjk

) and let Sk be the set of all the points in the torus [0, 1)2 which are at
distance at most r from some vertex in Yk. Notice that ρk and Sk depend on the set of
random points Yk. Also define S = S1 ∪ S2.

Let F be the event that d(Xi1 ,Xi2) > 3r. This holds with probability 1 − O(r2). In
order to bound P(E | F), we apply a similar approach to the one in the proof of Lemma 3.2.4.
In fact, observe that if F holds then S1 ∩ S2 = ∅. Therefore in view of (3.4) we can write

πr2(2 + (ρ1 + ρ2)/(6r)) < Area(S) <
18π

4
r2, (3.12)

and using the same elementary techniques that gave us (3.5) we get

(1 − Area(S))n−2ℓ <
(µ

n

)2+(ρ1+ρ2)/(6r) 1

(1 − 18πr2/4)2ℓ
. (3.13)

Observe that E can also be described as follows: For each k ∈ {1, 2} there is some non-
negative real ρk ≤ ǫr such that Xjk

is placed at distance ρk from Xik and to the right of Xik ;
all the remaining vertices in Yk are inside the half-circle of centre Xik and radius ρk; and
the n − ℓ vertices not in Yk lie outside Sk. In fact, rather than this last condition we only
require for our bound that all vertices in X \ (Y1 ∪ Y2) are placed outside S. Clearly, this
has probability (1 − Area(S))n−2ℓ. Then, from (3.13) and following an analogous argument
to the one that leads to (3.6), we obtain the bound

P(E | F) ≤ Θ(1)

∫ ǫr

0

∫ ǫr

0
πρ1

(π

2
ρ2
1

)ℓ−2
πρ2

(π

2
ρ2
2

)ℓ−2 1

n2+(ρ1+ρ2)/(6r)
dρ1dρ2

= Θ(1) I(1/6)2,
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where I(1/6) is defined in (3.7). Thus from (3.8) we conclude

P(E ∧ F) ≤ Θ(1) P (F) I(1/6)2 = O

(
1

n2ℓ log2ℓ−2 n

)
. (3.14)

Otherwise, suppose that F does not hold (i.e., d(Xi1 ,Xi2) ≤ 3r). Observe that E
implies that d(Xi1 ,Xi2) > r, since Xi1 and Xi2 must belong to different components. Hence
the circles with centres on Xi1 and Xi2 and radius r have an intersection of area less than
(π/2)r2. These two circles are contained in S and then we can write Area(S) ≥ (3/2)πr2.
Note that E implies that all vertices in X \ (Y1 ∪Y2) are placed outside S and that for each
k ∈ {1, 2} all the vertices in Yk \ {Xik} are at distance at most ǫr and to the right of Xik .
This gives us the following rough bound

P(E | F) ≤
(π

2
(ǫr)2

)2ℓ−2
(

1 − 3π

2
r2

)n−2ℓ

= O(1)

(
log n

n

)2ℓ−2 (µ

n

)3/2
.

Multiplying this by P(F) = O(r2) = O(log n/n) we obtain

P(E ∧ F) = O

(
log2ℓ−1 n

n2ℓ+1/2

)
, (3.15)

which is negligible compared to (3.14). The statement of the lemma follows from (3.11),
(3.14) and (3.15).

Theorem 3.2.7. Let ℓ ≥ 2 be a fixed integer. Let 0 < ǫ < 1/2 be fixed. Assume that
µ = Θ(1). Then

P(K̃ℓ > 0) ∼ P(Kℓ > 0) ∼ P(K ′
ǫ,ℓ > 0) = Θ

(
1

logℓ−1 n

)
.

Proof. From Corollary 1.12 in [15], we have

EK ′
ǫ,ℓ −

1

2
E[K ′

ǫ,ℓ]2 ≤ P(K ′
ǫ,ℓ > 0) ≤ EK ′

ǫ,ℓ,

and therefore by Lemmata 3.2.4 and 3.2.6 we obtain

P(K ′
ǫ,ℓ > 0) = Θ(1/ logℓ−1 n).

Combining this with Lemma 3.2.5, yields the statement.

3.3 Dynamic Properties

We define the dynamic model as follows. Given a positive real s = s(n) and a positive
integer m = m(n), we consider the following random process (Xt)t∈Z = (Xt(n, s,m))t∈Z: At
time step t = 0, n agents are scattered independently and u.a.r. over the torus [0, 1)2, as
in the static model. Moreover each agent chooses u.a.r. an angle α ∈ [0, 2π), and moves
in the direction of α, travelling distance s at each time step. These directions are changed
every m steps for all agents. More formally, for each agent i and for each interval [t, t + m]
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with t ∈ Z divisible by m, an angle in [0, 2π) is chosen independently and u.a.r., and this
angle determines the direction of i between time steps t and t + m. Note that we are also
considering negative steps, which is interpreted as if the agents were already moving around
the torus ever before step t = 0. We extend the notation from the static model, and denote
by Xi,t = (xi,t, yi,t) the position of each agent i at time t. Also let Xt =

⋃n
i=1 Xi,t be the

set of positions of the agents at time t. Furthermore, given a positive r = r(n) ∈ R such
that r = o(1), a random graph process can be derived from (Xt)t∈Z. For any t ∈ Z, the
vertex set of G(Xt; r) is Xt, and we join by an edge all pairs of vertices in Xt which are at
Euclidean distance at most r. We derive asymptotic results on

(
G(Xt; r)

)
t∈Z

as n → ∞.

We use the following lemma proven in [62].

Lemma 3.3.1 (Nain et al.). At any fixed step t ∈ Z, the vertices are distributed over the
torus [0, 1)2 independently and u.a.r. Consequently for any t ∈ Z, G(Xt; r) has the same
distribution as G(X ; r).

In the remaining of the section, we focus our attention around the threshold of con-
nectivity obtained in Section 3.2 and we assume that µ = Θ(1), or equivalently

r =

√
log n ± O(1)

πn
.

In order to prove the main statement of this section, we first require some technical
results which involve only two arbitrary consecutive steps t and t + 1 of (Xt)t∈Z. In this
context t is considered to be an arbitrary fixed integer, and it is often omitted from notation
whenever it is understood. Thus for each i ∈ {1, . . . , n}, the random positions Xi,t and Xi,t+1

of agent i at times t and t + 1 are simply denoted by Xi = (xi, yi) and X ′
i = (x′

i, y
′
i). Let

also X = Xt and X ′ = Xt+1. Note that the random points Xi and X ′
i are not independent.

In fact if 2πzi ∈ [0, 2π) is the angle in which the agent i moves between times t and t + 1,
then x′

i = xi +s cos(2πzi) and y′i = yi +s sin(2πzi), where all the sums involving coordinates
are taken mod 1. This motivates an alternative description of the model at times t and
t + 1 in terms of a three dimensional placement of the agents, in which the third dimension
is interpreted as a normalised angle. For each i ∈ {1, . . . , n}, define the random point
X̂i = (xi, yi, zi) ∈ [0, 1)3, and also let X̂ =

⋃n
i=1 X̂i. Observe that by Lemma 3.3.1 all the

random points X̂i are chosen independently and u.a.r. from the 3-torus [0, 1)3, and also that
X̂ encodes all the information of the model at times t and t + 1. In fact, if we map [0, 1)3

onto [0, 1)2 by the following surjections

π1 : [0, 1)3 → [0, 1)2 π2 : [0, 1)3 → [0, 1)2

(x, y, z) 7→ (x, y) (x, y, z) 7→ (x + s cos(2πz), y + s sin(2πz)),

we can recover the positions of agent i at times t and t + 1 from X̂i and write Xi = π1(X̂i)
and X ′

i = π2(X̂i). Moreover, for any measurable set A ⊆ [0, 1)2, the events Xi ∈ A and

X ′
i ∈ A are respectively equivalent to the events X̂i ∈ π−1

1 (A) and X̂i ∈ π−1
2 (A) in this new

setting. Furthermore, by setting Az = A− (s cos(2πz), s sin(2πz)) we get

Vol(π−1
2 (A)) =

∫

[0,1)

( ∫

Az

dxdy
)

dz = Area(A).
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In addition, observe that Vol(π−1
1 (A)) = Vol(A× [0, 1)) = Area(A), and hence we have

Area(A) = Vol(π−1
1 (A)) = Vol(π−1

2 (A)). (3.16)

In view of Lemma 3.3.1, for any measurable sets A ⊆ [0, 1)2 and B ⊆ [0, 1)3,

P(Xi ∈ A) = Area(A), P(X ′
i ∈ A) = Area(A), P(X̂i ∈ B) = Vol(B),

which is naturally compatible with (3.16).

Now we define some sets which will repeatedly appear in this section. For each i ∈
{1, . . . , n}, consider the sets

Ri = {X ∈ [0, 1)2 : d(X,Xi) ≤ r} and R′
i = {X ∈ [0, 1)2 : d(X,X ′

i) ≤ r},

and also let R̂i = π−1
1 (Ri) and R̂′

i = π−1
2 (R′

i) be their counterparts in [0, 1)3. Note that

for i, j ∈ {1, . . . , n}, we have that X̂i ∈ R̂j iff d(Xi,Xj) ≤ r, and similarly that X̂i ∈ R̂′
j

iff d(X ′
i,X

′
j) ≤ r, where each of these events occurs with probability exactly Vol(R̂i) =

Vol(R̂′
i) = πr2. Also observe that Xi is isolated in G(X ; r) iff (X̂ \ {X̂i})∩R̂i = ∅, and that

analogously X ′
i is isolated in G(X ′; r) iff (X̂ \ {X̂i}) ∩ R̂′

i = ∅. We need the following

Lemma 3.3.2. Assume µ = Θ(1). There exists a constant ǫ > 0 such that for large enough
n the following statements are true : For any i, j ∈ {1, . . . , n} (possibly i = j),

(i). if d(Xi,Xj) > r then Vol(R̂i ∩ R̂j) ≤ π
2 r2,

(ii). if s < r/7 and d(Xi,Xj) > r − 2s then Vol((R̂i ∪ R̂′
i) ∩ (R̂j ∪ R̂′

j)) ≤ (1 − ǫ)πr2,

(iii). if s ≥ r/7 and s = O(r) then Vol(R̂i ∩ R̂′
j) ≤ (1 − ǫ)πr2,

(iv). if s = ω(r) then Vol(R̂i ∩ R̂′
j) = O(r3 s+1

s ) = o(r2).

Proof.

Statement (i). Assume w.l.o.g. that the segment XiXj is vertical and that Xi is above Xj .

Let S ⊂ [0, 1)2 be the upper half-circle with centre Xi and radius r, and Ŝ = π−1
1 (S) =

S × [0, 1) ⊂ [0, 1)3. Notice that Vol(Ŝ) = πr2/2, Ŝ ⊂ R̂i and Ŝ ∩ R̂j = ∅, and the statement
follows.

Statement (ii). The distance between X ′
i and X ′

j is greater than 3r/7, since d(X ′
i ,X

′
j) ≥

d(Xi,Xj) − 2s > r − 4s. Let Si (respectively Sj) be the set of points in [0, 1)2 at distance
at most 8r/7 from X ′

i (respectively X ′
j) Note that Si and Sj are two circles of radius 8r/7

with centres at distance greater than 3r/7. Then straightforward computations show that
Area(Si∩Sj) is at most (1−ǫ)πr2 for some ǫ > 0. We define Ŝi = π−1

1 (Si) and Ŝj = π−1
1 (Sj).

We have, Ŝi ⊃ R̂i ∪ R̂′
i and Ŝj ⊃ R̂j ∪ R̂′

j . Hence,

Vol((R̂i ∪ R̂′
i) ∩ (R̂j ∪ R̂′

j)) ≤ Vol(Ŝi ∩ Ŝj) = Area(Si ∩ Sj) ≤ (1 − ǫ)πr2.
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Statement (iii). Let k ∈ {1, . . . , n} be different from i and j. Observe that Vol(R̂i \ R̂′
j) is

the probability that d(Xi,Xk) ≤ r but d(X ′
j ,X

′
k) > r. Suppose that d(Xi,Xk) ≤ r but also

d(X ′
j ,Xk) > 13r/14, which happens with probability at least (1 − 132/142)πr2. Let α be

the angle of
−−−→
X ′

jXk with respect to the horizontal axis. Recall that agent k moves between

time steps t and t + 1 towards a direction 2πzk, where zk is the third coordinate of X̂k. If
2πzk ∈ [α − π/3, α + π/3], then the agent increases its distance with respect to X ′

j by at
least s/2 ≥ r/14, and thus d(X ′

j ,X
′
k) > r/14 + 13r/14 = r. This range of directions has

probability 1/3. Summarising, we proved that Vol(R̂i \ R̂′
j) ≥ (1 − 132/142)πr2/3, and the

statement follows.

Statement (iv). Given k ∈ {1, . . . , n} different from i and j, observe that Vol(R̂i∩R̂′
j) is the

probability that d(Xk,Xi) ≤ r and d(X ′
k,X ′

j) ≤ r. Suppose first that s < 1/2. We claim
that the probability that d(X ′

k,X ′
j) ≤ r conditional upon any fixed outcome of Xk is at most

(2 + ǫ)r/s for some ǫ > 0, no matter which particular point Xk is chosen. In fact, assume

Xk 6= X ′
j and let α be the angle of

−−−→
XkX

′
j with respect to the horizontal axis. If agent k moves

between steps t and t + 1 towards a direction 2πzk not in [α − arcsin(r/s), α + arcsin(r/s)]
then d(X ′

k,X
′
j) > r. Hence, Vol(R̂i∩R̂′

j) is at most P(d(Xk ,Xi) ≤ r) = πr2 times (2+ǫ)r/s,
which satisfies the claim. The case Xk = X ′

j is trivial.

The case s ≥ 1/2 is a bit more delicate, since agent k may loop many times around the
torus while moving between steps t and t + 1. In fact, as we move along the circumference
of radius s centred on Xk, we cross the axes of the torus Θ(1 + s) times. This gives the
extra factor (1 + s) in the statement, which is negligible when s = o(1) but grows large
when s = ω(1).

For each i ∈ {1, . . . , n}, we define Q̂i := R̂′
i \ R̂i and Q̂′

i := R̂i \ R̂′
i. Given any two

agents i and j, observe that X̂i ∈ Q̂′
j iff X̂j ∈ Q̂′

i iff d(Xi,Xj) ≤ r and d(X ′
i,X

′
j) > r,

i.e. the agents are joined by an edge at time t but not at time t + 1. This holds with
probability Vol(Q̂i) = Vol(Q̂′

i), which does not depend on the particular agents and of t.
This probability will be denoted by q hereinafter. The value of this parameter depends on
the asymptotic relation between r and s and is given in the following

Lemma 3.3.3. The probability that two different agents i, j ∈ {1, . . . , n} are at distance at
most r at time t but greater than r at time t + 1 is q ≤ πr2, which also satisfies

q ∼





4
πsr if s = o(r),

Θ(r2) if s = Θ(r),

πr2 if s = ω(r).

Proof. The first bound on q is immediate from the definition of q and the fact that Vol(R̂i) =
πr2. In order to obtain the second statement, we consider separate cases.

Case 1 (s ≤ ǫr, for some fixed but small enough ǫ > 0). In order to compute the probability
that X̂j ∈ Q̂′

i, we express X̂j = (xj , yj , zj) in new coordinates (ρ, θ, z), where ρ = d(Xj ,X
′
i),

θ is the angle between the horizontal axis and
−−−→
XiXj , and z = zj . Then we integrate an

element of volume over the region Q̂′
i in terms of these coordinates. Let ξ = d(Xj ,Xi), so

that (ξ, θ, z) are the usual cylindrical coordinates (see Figure 3.7). From the law of cosines,
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we can establish the relation between ρ and ξ and write

ρ =
√

ξ2 + s2 − 2ξs cos θ and ξ =

√
ρ2 − s2 sin2 θ + s cos θ. (3.17)

Now observe that the minimum value that ρ can take is r−s, since Xj must lie outside the

Figure 3.7: Two agents that are at distance at most r at time t but greater
than r at time t + 1

circle of radius r − s and centre X ′
i. Otherwise by the triangular inequality d(X ′

i,X
′
j) ≤ r,

the agents i and j would share an edge at step t + 1. On the other hand, Xj must lie inside
the circle of radius r centred on Xi, and therefore (by setting ξ = r in (3.17)) the maximum
value that ρ can achieve is

√
r2 + s2 − 2rs cos θ.

Moreover, let α be the angle determined from the range of all possible values of 2πz
(i.e., possible directions for agent j to move). Again by the law of cosines,

α = 2 arccos

(
r2 − s2 − ρ2

2sρ

)
.

Finally from (3.17) and the change of variables formula, we can determine the element of
volume in coordinates (ρ, θ, z):

dxdydz = ξ dξdθdz =
ξρ

ξ − s cos θ
dρdθdz.

Using the fact that r − 2s ≤ ξ ≤ r, we can write

ξρ

ξ − s cos θ
= ρ

(
1 ± O

(s

r

))
.
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In view of all the above, we deduce

q =

∫

bQ′

i

dxdydz

=

∫ 2π

0

∫ √
r2+s2−2rs cos θ

r−s

α

2π

ξρ

ξ − s cos θ
dρdθ

=
(

1 ± O
(s

r

)) ∫ 2π

0

∫ √
r2+s2−2rs cos θ

r−s

1

π
arccos

(
r2 − s2 − ρ2

2sρ

)
ρ dρdθ

=
(

1 ± O
(s

r

))
2

∫ π

0

1

2π

(
− rs sin θ − θr2

+ (r2 + s2 − 2rs cos θ) arccos
r cos θ − s√

r2 + s2 − 2rs cos θ

)
dθ.

Looking at the Taylor series with respect to s/r of the expression inside the integral divided
by r2, we get

q =
(

1 ± O
(s

r

))∫ π

0
r2

(
−2θ cos θ

π

s

r
+ O

((s

r

)2
))

dθ

=
(

1 ± O
(s

r

)) 4

π
sr. (3.18)

Case 2 (ǫr < s < r/7). Recall that Ri is the circle of radius r and centre Xi. Take the chord
in Ri which is perpendicular to the segment XiX ′

i and at distance r from X ′
i. This chord

divides Ri into two regions. One of them, call it S, has the property that all the points
inside are at distance at least r from X ′

i and moreover Area(S) ≥ ǫ
√

2ǫ − ǫ2r2. Suppose
that Xj ∈ S (i.e., the agent j is in S at time t), which happens with probability at least
ǫ
√

2ǫ − ǫ2r2. Let us now consider the circle centred on X ′
i and passing through Xj . We

observe that d(X ′
j ,X

′
i) > d(Xj ,X

′
i) with probability at least 1/2, since it is sufficient that

the direction 2πzj in which agent j moves lies in the outer side of the tangent of that circle
at Xj. Therefore, the probability that d(Xj ,Xi) ≤ r and d(X ′

j ,X
′
i) > r, or equivalently

X̂j ∈ Q̂′
i, is at least 1

2ǫ
√

2ǫ − ǫ2r2.

Case 3 (s ≥ r/7). We can write

q = Vol(Q̂′
i) = Vol(R̂i \ R̂′

i) = Vol(R̂i) − Vol(R̂i ∩ R̂′
i),

and the result follows from the statements (i) and (iv) in Lemma 3.3.2.

We also need the following technical result, which allows us to compute the probability
that a given subset of [0, 1)3 contains no points in X̂ , but some other subsets contain at
least one. The proof is immediate from Lemma 2.4.1.

Lemma 3.3.4. For any fixed integer k ≥ 0, let Ŝ0, . . . , Ŝk be pairwise disjoint subsets of
[0, 1)3, with volumes s0, . . . , sk respectively. If

∑k
i=0 si = o(N), then

P

(
(Ŝ0 ∩ X̂ = ∅) ∧

k∧

i=1

(Ŝi ∩ X̂ 6= ∅)

)
∼ (1 − s0)n

k∏

i=1

(
1 − e−sin

)
.
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We are now in position to study the changes experienced by the isolated vertices
between two consecutive steps t and t+1. Extending the notation in Section 3.2, we denote
by K1,t the number of isolated vertices of G(Xt; r). Also, for any two consecutive steps t
and t + 1, we define the following random variables: Bt is the number of agents i such that
Xi is not isolated in G(Xt; r) but X ′

i is isolated in G(Xt+1; r); Dt is the number of agents i
such that Xi is isolated in G(Xt; r) but X ′

i is not isolated in G(Xt+1; r); St is the number of
agents i such that Xi and X ′

i are both isolated in G(Xt; r) and G(Xt+1; r). For simplicity,
we often denote them by B, D and S whenever t and t + 1 are understood. Note that B
and D have the same distribution, since any creation of an isolated vertex corresponds to a
destruction of an isolated vertex in the time-reversed process and vice versa.

To state the following result, we recall the definition of asymptotic mutual indepen-
dence from (2.34)

Proposition 3.3.5. Assume µ = Θ(1). Then for any two consecutive steps,

EB = ED ∼ µ(1 − e−qn) and ES ∼ µe−qn.

Moreover we have that

(i). If s = o(1/rn), then P(B > 0) ∼ EB; P(D > 0) ∼ ED; S is asymptotically Poisson;
and (B > 0), (D > 0) and S are asymptotically mutually independent.

(ii). If s = Θ(1/rn), then B, D and S are asymptotically mutually independent Poisson.

(iii). If s = ω(1/rn), then B and D are asymptotically Poisson; P(S > 0) ∼ ES; and B,
D and (S > 0) are asymptotically mutually independent.

Proof. The central ingredient in the proof is the computation of the joint factorial moments
E([B]ℓ1[D]ℓ2 [S]ℓ3) of these variables. In particular we find the asymptotic values of EB,
ED and ES. Moreover, In the case s = Θ

(
1/(rn)

)
, we show that for any fixed naturals ℓ1,

ℓ2 and ℓ3 we have

E([B]ℓ1 [D]ℓ2[S]ℓ3) ∼ (EB)ℓ1(ED)ℓ2(ES)ℓ3 . (3.19)

Then, the result follows from Theorem 1.23 in Bollobás’ [15]. The other cases are more
delicate since (3.19) does not always hold for extreme values of s, and we obtain a weaker
result. In the case s = o

(
1/(rn)

)
, we compute the moments for any natural ℓ3 but only for

ℓ1, ℓ2 ∈ {0, 1, 2} and obtain

E([B]ℓ1[D]ℓ2 [S]ℓ3) ∼ (EB)ℓ1(ED)ℓ2(ES)ℓ3 , if ℓ1, ℓ2 < 2,

E([B]2[D]ℓ2 [S]ℓ3) = o(E(B [D]ℓ2 [S]ℓ3)),

E([B]ℓ1[D]2[S]ℓ3) = o(E([B]ℓ1D [S]ℓ3)). (3.20)

From the previous equations and by extending to several variables the upper and lower
bounds given in [15], Section 1.4, we deduce that (B > 0), (D > 0) and S satisfy (2.34) and
also

P(B > 0) ∼ EB, P(D > 0) ∼ ED and P(S = k) ∼ e−ES (ES)k

k!
∀k ∈ N.
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Similarly, for the case s = ω
(
1/(rn)

)
, we compute the moments for any naturals ℓ1 and ℓ2

but only for ℓ3 ∈ {0, 1, 2} and obtain

E([B]ℓ1[D]ℓ2 [S]ℓ3) ∼ (EB)ℓ1(ED)ℓ2(ES)ℓ3 , if ℓ3 < 2,

E([B]ℓ1[D]ℓ2 [S]2) = o(E([B]ℓ1 [D]ℓ2S)) (3.21)

From this and by using once more upper and lower bounds given in Section 1.4 of [15], we
conclude that B, D and (S > 0) satisfy (2.34) and also

P(B = k) ∼ e−EB (EB)k

k!
∀k ∈ N,

P(D = k) ∼ e−ED (ED)k

k!
∀k ∈ N and P(S > 0) ∼ ES.

We proceed to compute the moments. First, define for each i ∈ {1, . . . , n} Bi, Di and Si as
the indicator functions of the following events respectively: Xi is not isolated in G(Xt; r) but
X ′

i is isolated in G(Xt+1; r); Xi is isolated in G(Xt; r) but X ′
i is not isolated in G(Xt+1; r);

Xi and X ′
i are both isolated in G(Xt; r) and G(Xt+1; r). This allows us to write

B =
n∑

i=1

Bi, D =
n∑

i=1

Di, S =
n∑

i=1

Si.

Note that Bi = 1 iff all points in X̂ \ {X̂i} are outside R̂′
i but at least one is inside Q̂′

i;

Di = 1 iff all points in X̂ \ {X̂i} are outside R̂i but at least one is inside Q̂i; and finally
Si = 1 iff all points in X̂ \ {X̂i} are outside R̂i ∪ R̂′

i = R̂i ∪ Q̂i = R̂′
i ∪ Q̂′

i.
Now given any fixed naturals ℓ1, ℓ2, ℓ3 with ℓ = ℓ1 + ℓ2 + ℓ3, we choose an ordered

tuple J of ℓ different agents i1, . . . , iℓ ∈ {1, . . . , n}, and define

E =

ℓ1∧

a=1

(Bia = 1) ∧
ℓ1+ℓ2∧

b=ℓ1+1

(Dib = 1) ∧
ℓ∧

c=ℓ1+ℓ2+1

(Sic = 1). (3.22)

Observe that P(E) does not depend of the particular tuple J , and multiplying it by the
number [n]ℓ of ordered choices of J , we get

E([B]ℓ1 [D]ℓ2 [S]ℓ3) = [n]ℓP(E) (3.23)

By relabelling the agents in J we assume hereinafter that J = (1, . . . , ℓ), and we call
Ŷ =

⋃ℓ
i=1{X̂i}. Moreover, we define the set

R̂ =

ℓ1⋃

i=1

R̂′
i ∪

ℓ1+ℓ2⋃

i=ℓ1+1

R̂i ∪
ℓ⋃

i=ℓ1+ℓ2+1

(R̂i ∪ R̂′
i),

and the collection of sets

Q̂ = {Q̂′
1, . . . , Q̂′

ℓ1 , Q̂ℓ1+1, . . . , Q̂ℓ1+ℓ2},

which play an important role in the computation of P(E). It is useful to call Q̂∗
i = Q̂′

i for

1 ≤ i ≤ ℓ1, Q̂∗
i = Q̂i for ℓ1 + 1 ≤ i ≤ ℓ1 + ℓ2, so that we can write Q̂ = {Q̂∗

1, . . . , Q̂∗
ℓ1+ℓ2

}.
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Case 1 ( s = Θ
(
1/(rn)

)
). We say that an agent i ∈ J is restricted if there is some other j ∈ J

with j > i such that d(Xi,Xj) ≤ 2r + 4s. Let F be the event that there are no restricted
agents in J , i.e. d(Xi,Xj) > 2r + 4s for all i, j ∈ J (i 6= j). This has probability 1 −O(r2).
Suppose first that F holds and compute the probability of E conditional upon that. We
observe that F implies that for any i, j ∈ J (i 6= j) we must have R̂i ∩ R̂j = ∅, R̂′

i ∩ R̂′
j = ∅

and R̂i ∩ R̂′
j = ∅. Then Vol(R̂) = ℓπr2 + ℓ3q, and the sets in Q̂ are pairwise disjoint and

also disjoint from R̂. Moreover observe that, conditional upon F , E is equivalent to the
event that all points in X̂ \ Ŷ lie outside R̂, but at least one belongs to each Q̂∗

i ∈ Q̂. From
all the above, the probability of E can be easily obtained from Lemmata 3.3.3 and 3.3.4:

P(E ∧ F) = (1 − O(r2))P(E | F)

∼ (1 − ℓπr2 − ℓ3q)n(1 − e−qn)ℓ1+ℓ2

∼
(µ

n

)ℓ
(1 − e−qn)ℓ1+ℓ2e−ℓ3qn. (3.24)

We claim that P(E ∧ F) is the main contribution to P(E). In fact if F does not hold (i.e.
some of the points in Ŷ are at distance at most 2r + 4s), then P(E | F) is larger than the
expression in (3.24), but this is balanced out by the fact that P(F) is small. Before proving
this claim, define H to be the event that d(Xi,Xj) > r − 2s for all i, j ∈ J (i 6= j). Notice
that E implies H, since otherwise, for some i, j ∈ J , Xi and Xj would be joined by an edge
in G(Xt; r) and also X ′

i and X ′
j in G(Xt+1; r), which is not compatible with E . Therefore we

only need to see that P(E ∧ F) = P(F ∧H)P(E | F ∧H) is negligible compared to (3.24).
Suppose then that H holds and also that p > 0 of the agents in J are restricted (i.e.

F does not hold). This happens with probability O(r2p). In this case, we deduce that
Vol(R̂) ≥ (ℓ − p)πr2 + ǫπr2, since each unrestricted agent in J contributes at least πr2 to
Vol(R̂) and the first restricted one gives by Lemma 3.3.2 (ii) the term ǫπr2. Moreover, E
implies that all points in X̂ \ Ŷ lie outside of R̂, which has probability

(
1 − Vol(R̂)

)n−ℓ
=

O(1/nℓ−p+ǫ). Summarising, the weight in P(E ∧F) coming from situations with p restricted
agents is O(r2p/nℓ−p+ǫ) = O(logp n/nℓ+ǫ), and is thus negligible compared to (3.24). Hence
P(E) ∼ P(E ∧ F), and the required condition on the moments announced in (3.19) follows
from (3.23) and (3.24).

Case 2 ( s = o
(
1/(rn)

)
). Defining F and H as in the case s = Θ

(
1/(rn)

)
and by an

analogous argument, we obtain

P(E ∧ F) ∼
(µ

n

)ℓ
(1 − e−qn)ℓ1+ℓ2e−ℓ3qn ∼

(µ

n

)ℓ
(qn)ℓ1+ℓ2 (3.25)

However, the analysis of the case that F does not hold is slightly more delicate here. Indeed,
there is an additional o(1) factor in (3.25), namely (qn)ℓ1+ℓ2, which forces us to get tighter
bounds on P(E ∧ F ∧H) than the ones obtained before. Unlike in the case s = Θ

(
1/(rn)

)
,

we also need to consider the role of Q̂ when F does not hold, and special care must be taken
with several new situations which do not occur otherwise. For instance, since the elements
of Q̂ are not necessarily disjoint, then for Q̂∗

i , Q̂∗
j ∈ Q̂ the condition that both contain some

element of X̂ can be satisfied by having just a single point in Q̂∗
i ∩ Q̂∗

j ∩ X̂ . Moreover, if
ℓ1 ≥ 2 and 1 ≤ i, j ≤ ℓ1 (or ℓ2 ≥ 2 and ℓ1 + 1 ≤ i, j ≤ ℓ1 + ℓ2), the previous condition is
also satisfied if X̂j ∈ Q̂∗

i , which is equivalent to X̂i ∈ Q̂∗
j . If the latter situation occurs, we

say that i and j collaborate.
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We first bound the weight in P(E ∧ F) due to situations in which there are no pairs
of elements in J which collaborate. We need some definitions. Let J1 = {1, . . . , ℓ1 + ℓ2}
and Ŷ1 =

⋃ℓ1+ℓ2
i=1 {X̂i}, and consider the class P of partitions of J1. Namely, a partition of

J1 is a collection of subsets of J1, here denoted blocks, which are disjoint and have union
J1. The size of a partition is the number of blocks, and for each block we call leader to
the maximal element in the block. Given a partition P = {A1, . . . , Ak} ∈ P and also
i1, . . . , ik ∈ {1, . . . , n} \ J , let EP,i1,...,ik be the following event: For each block Aj of P , we

have X̂ij ∈ ⋂i∈Aj
Q̂∗

i and moreover all the points in X̂ \(Ŷ∪{i1, . . . , ik}) lie outside of R̂. We

wish to bound the probability of EP,i1,...,ik ∧F∧H. Notice that if EP,i1,...,ik holds, then all the
ℓ1 + ℓ2 − k non-leader elements in J1 must be restricted, and possibly some other p′ agents
in J are restricted too. Moreover, F does not hold iff this p′ satisfies 0 < ℓ1 +ℓ2−k+p′ < ℓ.
Given any p′ with that property, suppose that p′ is exactly the number of restricted agents
in J which are either in J \J1 or are leaders of some block. We condition upon this and also
upon H, which has probability r2p′ . Then for each block Aj with leader lj , event EP,i1,...,ik

requires that X̂ij ∈ Q̂∗
lj

and for all i ∈ Aj (i 6= lj) X̂i ∈ (Q̂ij ∪ Q̂′
ij

). In addition, since the

number of restricted agents in J is ℓ1 +ℓ2−k+p′ > 0, arguing as in the case s = Θ
(
1/(rn)

)
,

we have Vol(R̂) ≥ (ℓ3 + k − p′)πr2 + ǫπr2. Then the contribution to P(EP,i1,...,ik ∧ F ∧ H)
for this particular p′ is

O(r2p′)qk(2q)ℓ1+ℓ2−k(1 − Vol(R̂))n−ℓ−k = O

(
logp′ n

nℓ+k+ǫ

)
(qn)ℓ1+ℓ2,

so for some 0 < ǫ′ < ǫ, we can write

P(EP,i1,...,ik ∧ F ∧H) = O

(
1

nℓ+k+ǫ′

)
(qn)ℓ1+ℓ2.

Finally observe that if there are no pairs of elements in J which collaborate, then E ∧ F
implies that EP,i1,...,ik ∧ F ∧ H holds for some P ∈ P of size k and some i1, . . . , ik ∈
{1, . . . , n} \ J , and therefore has probability

O
(
nk
)

O

(
1

nℓ+k+ǫ′

)
(qn)ℓ1+ℓ2 = O

(
1

nℓ+ǫ′

)
(qn)ℓ1+ℓ2 , (3.26)

which is negligible compared to (3.25). In particular, if ℓ1, ℓ2 < 2, then no pair of elements in
J collaborates and then P(E) ∼ P(E ∧F). Hence, the first line of (3.20) follows from (3.23)
and (3.25).

We extend the approach above to deal with situations in which some pair of elements
in J collaborate. Unfortunately, their contribution to P(E∧F∧H) may be larger than (3.25)
if s tends to 0 fast. Hence we restrict ℓ1 and ℓ2 to be at most 2 and prove only (3.20). If
ℓ1 = 2 let E1 be the following event: X̂1 ∈ Q̂′

2; R̂ contains no points in X̂ \ Ŷ; and for each

natural (3 ≤ i ≤ 2 + ℓ2), Q̂i contains some point in X̂ \ Ŷ. Similarly if ℓ2 = 2 let E2 be
the following event: X̂ℓ1+1 ∈ Q̂ℓ1+2; R̂ contains no points in X̂ \ Ŷ; and for each natural i
(1 ≤ i ≤ ℓ1), Q̂′

i contains some point in X̂ \ Ŷ. Finally if ℓ1 = ℓ2 = 2 let E1,2 be the following

event: X̂1 ∈ Q̂′
2 and X̂3 ∈ Q̂4. In order to compute P(E1 ∧ H), we can repeat the same

argument as above, but imposing that X̂1 ∈ Q̂′
2 and ignoring other conditions on Q̂′

1 and
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Q̂′
2. We obtain that for some ǫ′ > 0

P(E1 ∧H) = O

(
1

nℓ−1+ǫ′

)
q(qn)ℓ2 = O

(
1

nℓ+ǫ′

)
(qn)1+ℓ2, (3.27)

and similarly

P(E2 ∧H) = O

(
1

nℓ+ǫ′

)
(qn)ℓ1+1 and P(E1,2 ∧H) = O

(
1

nℓ+ǫ′

)
(qn)2. (3.28)

Observe that if some agents in J collaborate, then E∧F implies that E1∧H, E2∧H or E1,2∧H
hold. Unfortunately, from (3.25), (3.27) and (3.28) we cannot guarantee that P(E ∧ F) is
smaller than P(E ∧ F), but in any case, by multiplying these probabilities by [n]ℓ in view
of (3.23), we complete the proof of (3.20).

Case 3 ( s = ω
(
1/(rn)

)
but also s = O(r) ). Following the same notation as in the case

s = Θ
(
1/(rn)

)
and by an analogous argument we obtain

P(E ∧ F) ∼
(µ

n

)ℓ
(1 − e−qn)ℓ1+ℓ2e−ℓ3qn ∼

(µ

n

)ℓ
e−ℓ3qn (3.29)

If ℓ3 ≤ 1, we claim that this is the main contribution to P(E). In fact, suppose that H holds
and also that p > 0 of the agents in J are restricted (i.e. F does not hold). This happens
with probability O(r2p). Since ℓ3 ≤ 1, then the only possible event which contributes to S
required in the definition of E is (Sℓ = 1) (cf. (3.22)). This involves agent ℓ which cannot
be restricted by definition. Then we deduce that Vol(R̂) ≥ (ℓ−p)πr2 + ℓ3q + ǫπr2, since the
unrestricted agents in J contribute (ℓ − p)πr2 + ℓ3q to Vol(R̂) and the first restricted one
gives the term ǫπr2, by Lemma 3.3.2 (ii) and (iii). Therefore, the probability of E in this
situation is O(e−ℓ3qn/nℓ−p+ǫ), which combined with the probability O(r2p) that p agents
are restricted has negligible weight compared to (3.29). Hence, P(E) ∼ P(E ∧ F), and the
first line of (3.21) follows from (3.23) and (3.29).

Unfortunately, if ℓ3 = 2 and we have p restricted agents in J , we can only assure that
Vol(R̂) ≥ (ℓ − p)πr2 + q + ǫπr2, and then for some 0 < ǫ′ < ǫ

P(E ∧ F) = O

(
r2p

nℓ−p+ǫ

)
e−qn = O

(
1

nℓ+ǫ′

)
e−qn, (3.30)

which may have significant contribution to P(E) if s is large enough. But in any case, in
view of (3.23), (3.29) and (3.30), we verify that the second line of (3.21) is satisfied.

Case 4 ( s = ω(r) ). Let F ′ be the event that for any i, j ∈ J (i 6= j) we have that
d(Xi,Xj) > 2r and d(X ′

i ,X
′
j) > 2r. This event has probability 1 − O(r2). Observe that

if F ′ holds, then for any i, j ∈ J (i 6= j) we must have R̂i ∩ R̂j = ∅, R̂′
i ∩ R̂′

j = ∅ and

R̂i ∩ R̂′
j = ∅. Therefore, Vol(R̂) = ℓπr2 + ℓ3q and the sets in Q̂ are pairwise disjoint and

also disjoint from R̂. Then in view of Lemmata 3.3.3 and 3.3.4, and by the same argument
that leads to (3.24)

P(E ∧ F ′) ∼
(µ

n

)ℓ
(1 − e−qn)ℓ1+ℓ2e−ℓ3qn ∼

(µ

n

)ℓ
e−ℓ3qn. (3.31)

The remaining of the argument is analogous to Case 3 but replacing F with F ′ and using
Lemma 3.3.2 (iv).
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Taking into account that K1,t = Dt + St and K1,t+1 = St + Bt, Proposition 3.3.5
completely characterises the number of isolated vertices at two consecutive steps in the
case s = Θ

(
1/(rn)

)
. For the other ranges of s, the result is weaker but still sufficient for

our further purposes. We remark that if s = o(1/(rn), then creations and destructions
of isolated vertices are rare, but a Poisson number of isolated vertices is present at both
consecutive steps. Otherwise if s = ω(1/(rn), then the isolated vertices which are present
at both consecutive steps are rare since, but a Poisson number of them are created and also
a Poisson number destroyed.

Now in order to characterise the connectivity of
(
G(Xt; r)

)
t∈Z

, we need to bound the
probability of the event that components other than isolated vertices and the giant one
appear at some step. We know by Theorem 3.2.2 that a.a.s. this does not occur at one
single step t. However during long periods of time this event could affect the connectivity
and must be considered.

Extending the notation in Section 3.2, given a step t let K̃2,t be the number of non-
solitary components other than isolated vertices occurring at step t. We show that they have
a negligible effect compared to isolated vertices in the dynamic evolution of connectivity.

Lemma 3.3.6. Assume that µ = Θ(1) and s = o
(
1/(rn)

)
. Then,

• P(K̃2,t > 0 ∧ K̃2,t+1 = 0) = P(K̃2,t = 0 ∧ K̃2,t+1 > 0) = o(srn),

• P(K̃2,t > 0 ∧ Bt > 0) = o(srn).

Proof. Recall from Lemma 3.3.3 that if s = o
(
1/(rn)

)
then q = Θ(rs). It suffices to

prove that P(K̃2,t > 0 ∧ K̃2,t+1 = 0) = o(qn) and P(K̃2,t > 0 ∧ Bt > 0) = o(qn), since

(K̃2,t = 0∧ K̃2,t+1 > 0) corresponds in the time-reversed process to (K̃2,t > 0∧ K̃2,t+1 = 0),
and thus they have the same probability.

Consider all the possible components in G(X ; r) which are not solitary and have size
at least 2. They are classified into several types according to their size and diameter, and
we deal with each type separately. Then if we denote by Mi the number of components of
type i in G(Xt; r), we must show for each i that

P(Mi > 0 ∧ K̃2,t+1 = 0) = o(qn) and P(Mi > 0 ∧ Bt > 0) = o(qn). (3.32)

Also we need one definition which helps to describe the changes of edges between
G(Xt; r) and G(Xt+1; r). For each i ∈ {1, . . . , n} we define P̂i = Q̂i ∪ Q̂′

i = R̂i∆R̂′
i (where

∆ denotes the symmetric difference of sets). Given also j ∈ {1, . . . , n}, see that X̂j ∈ P̂i iff

X̂i ∈ P̂j iff agents i and j share an edge either at time t or at time t + 1 but not at both

times, which happens with probability Vol(P̂i) = 2q.
Each part in this proof is labelled by a number followed by a prime (′) in order to avoid

confusion with the parts in the proof of Lemma 3.2.5, which are often referred to. Moreover,
we write for simplicity Part i (p.L. 3.2.5) to denote Part i in the proof of Lemma 3.2.5.

We set throughout this proof ǫ = 10−18.

Part 1′. Consider all the possible components in G(X ; r) which have diameter at most ǫr
and size between 2 and log n/37. Call them components of type 1, and let M1 denote their
number at time t. This definition is similar to the one in Part 1 (p.L. 3.2.5), but also
includes components of size 2, covered by Lemma 3.2.4.
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Given any i ∈ {1, . . . , n}, let Ei be the following event: There exists a component
Γ of type 1 in G(X \ {Xi}; r) and moreover for some j ∈ {1, . . . , n} such that Xj is a

vertex of Γ we have that X̂i ∈ P̂j. In order to compute the probability of Ei, note that
the arguments in the proofs of Lemmata 3.2.4 and 3.2.5 are still valid if we replace X by
X \ {Xi} (i.e. we ignore agent i in the model). Hence, the probability of having some
component in G(X \ {Xi}; r) of type 1 and size at least ℓ ≥ 2 is O(1/ logℓ−1 n). Suppose
first that G(X \ {Xi}; r) has some component Γ of type 1 and size between 3 and log n/37.
This happens with probability O(1/ log2 n). Conditional upon this, the probability that
X̂i ∈ P̂j for some j ∈ {1, . . . , n} with Xj being a vertex of Γ is at most log n/37 times
2q. This contributes to the probability of Ei by O(1/ log2 n)(log n/37)(2q) = O(q/ log n).
Otherwise suppose that G(X \ {Xi}; r) has some component Γ of type 1 and size exactly
2. This happens with probability O(1/ log n). Conditional upon this, the probability that
X̂i ∈ P̂j for some j ∈ {1, . . . , n} with Xj being a vertex of Γ is at most two times 2q. This
also contributes to the probability of Ei by O(1/ log n)(4q) = O(q/ log n), and therefore
P(Ei) = O(q/ log n).

Given any i1, i2 ∈ {1, . . . , n} (i1 6= i2), let Fi1,i2 be the following event: There exists a

component Γ of type 1 in G(X \{Xi2}; r) and moreover R̂′
i1
∩(X̂ \{X̂i1 , X̂i2}) = ∅. To derive

the probability of Fi1,i2, we distinguish two cases according to the distance between Xi1 and
Γ. Suppose first that for some h ∈ {1, . . . , n} \ {i1, i2} we have that r < d(Xi1 ,Xh) ≤ 3r,
which happens with probability O(r2) = O(log n/n). Let Sh be the set of points in [0, 1)2 at
distance greater than ǫr but at most r from Xh, and let Si1 be the circle with centre Xi1 and
radius r−2s. At least one half-circle of Si1 has all points at distance greater than r from Xh,
so Area(Sh∪Si1) ≥ (1−ǫ2)πr2+π(r−2s)2/2 ≥ (5/4)πr2. Notice that, if Fi1,i2 holds for some
component Γ which contains a vertex Xh such that d(Xi1 ,Xh) ≤ 3r, then we must have
d(Xi1 ,Xh) > r and moreover Sh∪Si1 must contain no point in X \{Xi1 ,Xi2}, which occurs
with probability (1 − Area(Sh ∪ Si1))n−2 = O(1/n5/4). Therefore, multiplying this by the
probability that d(Xi1 ,Xh) ≤ 3r and taking the union bound over the n−2 possible choices
of h, the contribution to P(Fi1,i2) due to situations of this type is O(n(log n/n)/n5/4) =
O(log n/n5/4), and in particular is O(1/(n log n)). On the other hand, we claim that the
probability that Fi1,i2 holds for some component Γ with all vertices at distance greater
than 3r from Xi1 is also O(1/(n log n)). In order to prove this last claim, we follow all
the notation in the proof of Lemma 3.2.4 for the remaining of the paragraph, and also
define Ŝ = π−1

1 (S) and Ŷ = π−1
1 (Y). We can repeat the same computations the proof of

Lemma 3.2.4 but, instead of asking that all the n − ℓ points in X \ Y lie outside of S, we
require that all the n− ℓ− 2 points in X̂ \ (Ŷ ∪ {X̂i1 , X̂i2}) lie outside of Ŝ ∪ R̂′

i1
. This last

fact occurs with probability P̂ = (1 − Vol(Ŝ ∪ R̂′
i1

))n−ℓ−2, which plays a role analogous to
that of P in the proof of Lemma 3.2.4. If Xi1 is at distance greater than 3r from any point
in Y, then Ŝ and R̂′

i1
are disjoint. Therefore from (3.4) we get

πr2

(
2 +

1

6

ρ

r

)
< Vol(Ŝ ∪ R̂′

i1) <
13π

4
r2, (3.33)

and an argument analogous to that leading to (3.5) shows that

P̂ <
(µ

n

)2+ρ/(6r) 1

(1 − 13πr2/4)ℓ+1
. (3.34)
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Repeating the same computations in the proof of Lemma 3.2.4, but replacing P with P̂ ,
proves the claim for components of type 1 of fixed size ℓ ≥ 2. This is extended to all
components of type 1 by arguing as in Part 1 (p.L. 3.2.5). As a result, we conclude that
P(Fi1,i2) = O(1/(n log n)).

Now we proceed to prove (3.32) for components of type 1. First observe that the event
(M1 > 0∧ K̃2,t+1 = 0) implies that Ei holds for some i ∈ {1, . . . , n}, since the only way for a
component of type 1 to disappear within one time step is getting joined to something else.
Therefore,

P(M1 > 0 ∧ K̃2,t+1 = 0) ≤
n∑

i=1

P(Ei) = O

(
qn

log n

)
.

Notice that (M1 > 0 ∧ Bt > 0) implies that Fi1,i2 holds and moreover X̂i2 ∈ Q̂′
i1

, for some
i1, i2 ∈ {1, . . . , n} (i1 6= i2). Then,

P(M1 > 0 ∧ Bt > 0) ≤
∑

i1,i2

P
(
Fi1,i2 ∧ (X̂i2 ∈ Q̂′

i1)
)

= O

(
n2q

n log n

)
= O

(
qn

log n

)
.

Part 2′. Consider all the possible components in G(X ; r) which have diameter at most ǫr
and size greater than log n/37. Call them components of type 2, and let M2 denote their
number at time t.

Repeat the same tessellation of [0, 1)2 into cells as in Part 2 (p.L. 3.2.5), and also
consider the set of square boxes defined there. Given any box b and i, j ∈ {1, . . . , n} (i 6= j),
we define Eb,i,j to be the event that box b contains more than log n/37−1 points of X \{Xi}
and moreover X̂i ∈ P̂j . Observe that each of the events (M2 > 0 ∧ K̃2,t+1 = 0) and
(M2 > 0 ∧ Bt > 0) implies that Eb,i,j holds for some box b and i, j ∈ {1, . . . , n}. Then, by
repeating the argument in Part 2 (p.L. 3.2.5), but ignoring Xi and also replacing log n/37
with log n/37 − 1, we deduce that

P(M2 > 0 ∧ K̃2,t+1 = 0) ≤ O

(
1

n1.1 log n

)∑

i,j

P(X̂j ∈ P̂i) = O

(
qn

n0.1 log n

)
,

and the same bound applies to P(M2 > 0 ∧ Bt > 0).

Part 3′. Consider all the possible components in G(X ; r) which are not embeddable and
not solitary. Call them components of type 4, and let M4 denote their number at time t.

Repeat the same tessellation of [0, 1)2 into cells as in Part 4 (p.L. 3.2.5), and observe
that each of the events (M4 > 0 ∧ K̃2,t+1 = 0) and (M4 > 0 ∧ Bt > 0) implies that for
some i, j ∈ {1, . . . , n} there exists some connected union S∗ of cells in the tessellation with
Area(S∗) ≥ (11/5)πr2 such that S∗ ∩ (X \ {Xi}) = ∅ and moreover X̂i ∈ P̂j. Hence, from
Part 4 (p.L. 3.2.5) but replacing X with X \ {Xi}, we obtain

P(M4 > 0 ∧ K̃2,t+1 = 0) ≤ O

(
1

n6/5 log n

)∑

i,j

P(X̂j ∈ P̂i) = O

(
qn

n1/5 log n

)
,

and the same bound applies to P(M4 > 0 ∧ Bt > 0).

Part 4′. The embeddable components with diameter at least ǫr treated in Part 3 (p.L. 3.2.5)
are here divided into two types. First consider all the possible components in G(X ; r) of
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diameter between ǫr and 6
√

2r. Call them components of type 3a, and let M3a denote their
number at time t.

We tessellate the torus [0, 1)2 into square cells of side αr, for some fixed but small
enough α > 0. From Part 3 (p.L. 3.2.5), if G(Xt; r) has some component of this type, then
there exists a topologically connected union S∗ of cells with Area(S∗) ≥ (1 + ǫ/6)πr2 which
contains no point in X . By removing some extra cells from S∗, we can assume that the
number of cells in S∗ is exactly ⌈ (1+ǫ/6)π

α2 ⌉. Now for each i, j ∈ {1, . . . , n} and each union

S∗ of ⌈ (1+ǫ/6)π
α2 ⌉ cells that is topologically connected, let Ei,j,S∗ be the following event: S∗

contains no points in X \ {Xi,Xj}, Xj is at distance at least 2r from all the points in S∗;

R̂′
j contains no points in X̂ \ {X̂i, X̂j}; and moreover X̂i ∈ P̂j . Notice that if Xj is at

distance at least 2r from all the points in S∗, then π−1
1 (S∗) and R̂′

j are disjoint. Hence,

Vol(π−1
1 (S∗) ∪ R̂′

j) ≥ (2 + ǫ/6)πr2 and

P(Ei,j,S∗) ≤
(

1 − Vol(π−1
1 (S∗) ∪ R̂′

j)
)n−2

(2q) = O
( q

n2+ǫ/6

)
.

Similarly, let Fi,j,S∗ be the following event: S∗ contains no points in X \ {Xi,Xj}; Xj is

at distance at most 2r from some point in S∗; and moreover X̂i ∈ P̂j . Notice that the
probability that Xj is at distance at most 2r from some point in S∗ is O(r2) = O(log n/n).
Hence,

P(Fi,j,S∗) ≤ (1 − Area(S∗))n−2 O

(
log n

n

)
(2q) = O

(
q log n

n2+ǫ/6

)
.

Finally, observe that each of the events (M3a > 0 ∧ K̃2,t+1 = 0) and (M3a > 0 ∧ Bt > 0)
implies that either Ei,j,S∗ or Fi,j,S∗ hold, for some i, j ∈ {1, . . . , n} and some topologically

connected union S∗ of cells. Therefore, the probabilities of (M3a > 0 ∧ K̃2,t+1 = 0) and
(M3a > 0 ∧ Bt > 0) are at most

∑

i,j,S∗

Ei,j,S∗ +
∑

i,j,S∗

Fi,j,S∗ = O
( qn

nǫ/6

)
.

Part 5′. Finally consider all the possible components in G(X ; r) which are embeddable and
have diameter at least 6

√
2r. Call them components of type 3b, and let M3b denote their

number at time t.
We tessellate the torus into square cells of side αr, for some fixed but small enough

α > 0. Our goal is to show that if G(Xt; r) has some component of type 3b, then there
exists some topologically connected union S∗ of cells with Area(S∗) ≥ (11/5)πr2 and which
does not contain any vertex in X . Then, arguing as in Part 3′, we conclude that both
P(M3b > 0 ∧ K̃2,t+1 = 0) and P(M3b > 0 ∧ Bt > 0) are O

(
qn/(n1/5 log n)

)
. We now

proceed to prove the claim on the union of cells S∗. Given a component Γ of type 3b
in G(Xt; r), let S ′, iT and iB be defined as in Part 3 (p.L. 3.2.5). Then, by repeating the
same argument in there but replacing ǫr with 6

√
2r, we can assume w.l.o.g. that the vertical

distance between XiT and XiB is at least 6r, and claim that the upper half-circle with centre
XiT and radius r and the lower half-circle with centre XiB and radius r must be disjoint and
contained in S ′. Now, consider the region of points in the torus [0, 1)2 with the y-coordinate
between that of XiT and XiB , and split this region into three horizontal bands of the same
width. Observe that each band has width at least 2r and hence must contain some vertex of
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Γ. For each of these bands, pick the rightmost vertex of Γ in the band. We select the right
lower quarter-circle of radius r centred at the vertex if the vertex is closer to the top of the
band, or otherwise the right upper quarter-circle. We also perform the symmetric operation
and choose three more quarter-circles to the left of the leftmost vertices in the three bands.
All these six quarter-circles together with the two half-circles previously described are by
construction mutually disjoint and contained in S ′. Therefore Area(S ′) ≥ (5/2)πr2. Let S∗

be the union of all the cells in the tessellation which are fully contained in S ′. We loose a
bit of area compared to S ′. However, if α was chosen small enough, we can guarantee that
S∗ is topologically connected and also Area(S∗) ≥ (11/5)πr2. This α can be chosen to be
the same for all components of type 3b.

Now we can characterise the connectivity of
(
G(Xt; r)

)
t∈Z

at two consecutive steps.

We denote by Ct the event that G(Xt; r) is connected, and by Dt = Ct the event that G(Xt; r)
is disconnected.

Corollary 3.3.7. Assume that µ = Θ(1). Then,

P(Ct ∧ Dt+1) ∼ e−µ(1 − e−EB), P(Dt ∧ Ct+1) ∼ e−µ(1 − e−EB)

P(Ct ∧ Ct+1) ∼ e−µe−EB , P(Dt ∧ Dt+1) ∼ 1 − 2e−µ + e−µe−EB

Proof. First observe that K1,t = St + Dt and K1,t+1 = St + Bt. Therefore we have

P(K1,t = 0 ∧ K1,t+1 > 0) = P(St = 0 ∧ Dt = 0 ∧ Bt > 0),

and by Proposition 3.3.5 we get

P(K1,t = 0 ∧ K1,t+1 > 0) ∼ e−ES−ED(1 − e−EB) ∼ e−µ(1 − e−EB). (3.35)

We want to relate this probability with P(Ct ∧ Dt+1). In fact, by partitioning (K1,t =
0 ∧ K1,t+1 > 0) and (Ct ∧ Dt+1) into disjoint events, we obtain

P(K1,t = 0 ∧ K1,t+1 > 0) = P(Ct ∧ K1,t+1 > 0) + P(Dt ∧ K1,t = 0 ∧ K1,t+1 > 0),

P(Ct ∧Dt+1) = P(Ct ∧ K1,t+1 > 0) + P(Ct ∧ Dt+1 ∧ K1,t+1 = 0),

and thus we can write

P(Ct ∧ Dt+1) = P(K1,t = 0 ∧ K1,t+1 > 0) + P1 − P2, (3.36)

where P1 = P(Ct ∧ Dt+1 ∧ K1,t+1 = 0) and P2 = P(Dt ∧ K1,t = 0 ∧ K1,t+1 > 0).
Suppose that s = o

(
1/(rn)

)
. In this case, P(K1,t = 0 ∧ K1,t+1 > 0) = Θ(srn)

(see (3.35) and Proposition 3.3.5). Also observe that D ∧ (X = 0) implies that X̃ > 0.
In fact, we must have at least two components of size greater than 1, so at least one of
these must be non-solitary. Then, we have that P1 ≤ P(K̃2,t = 0 ∧ K̃2,t+1 > 0) and

P2 ≤ P(K̃2,t > 0 ∧ Bt > 0), and from Lemma 3.3.6 we get

P1, P2 = o
(
P(K1,t = 0 ∧ K1,t+1 > 0)

)
. (3.37)

Otherwise if s = Ω
(
1/(rn)

)
, then P(K1,t = 0 ∧ K1,t+1 > 0) = Θ(1). In this case, we

simply use the fact that P1 ≤ P(K̃2,t+1 > 0) = o(1) and P2 ≤ P(K̃2,t > 0) = o(1) (see
Theorem 3.2.7 and Lemma 3.3.1), and deduce that (3.37) also holds.
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Finally, the asymptotic expression of P(Ct ∧ Dt+1) is obtained from (3.35), (3.36)
and (3.37). Moreover, by considering the time-reversed process, we deduce that P(Dt ∧
Ct+1) = P(Ct ∧ Dt+1). The remaining probabilities in the statement are computed from
Corollary 3.2.3, Lemma 3.3.1, and using the fact that

P(Ct ∧ Ct+1) = P(Ct) − P(Ct ∧ Dt+1),

P(Dt ∧ Dt+1) = P(Dt) − P(Dt ∧ Ct+1).

Given any event E in the static model G(X ; r), we denote by Et the event that E
holds at time t. In the

(
G(Xt; r)

)
t∈Z

model, we define Lt(E) analogously to its definition in
Chapter 2, which in fact is not specific of any particular random process. Namely, Lt(E) is
the number of consecutive steps that E holds starting at step t. Note that, as in Chapter 2,
the distribution of Lt(E) does not depend on t. Therefore, Lemma 2.5.10 also applies to the
present setting.

Our main goal in this section is to compute the expected time that the graph of
walkers remains (dis)connected, after a point in time at which it becomes (dis)connected.
More precisely, define

LCav = E(Lt(C) | Dt−1 ∧ Ct) and LDav = E(Lt(D) | Ct−1 ∧ Dt).

Then, from Lemma 2.5.10, in order to find the asymptotic value of LCav and LDav it suffices
to see that E(L(C)) < +∞ and E(L(D)) < +∞.

Lemma 3.3.8. Let b = b(n) be the smallest natural number such that (b − 3)ms ≥ 3
√

2/2.
Then, there exists p = p(n) > 0 such that: for any fixed circle R ⊂ [0, 1)2 of radius r/2,
any i ∈ {1, . . . , n}, any t ∈ Z, and conditional upon any particular position of Xi,t in the
torus, the probability that Xi,t+bm ∈ R is at least p.

Proof. Fix arbitrary positions for Xi,t and for the centre X of circle R. Let t′ be the smallest
integer such that t′ | m and t′ ≥ t. Observe that t′ is the first time after t when agent i
selects a new angle. Let h = t′ − t, which satisfies 0 ≤ h < m. The particular point Xi,t is
irrelevant in our argument, and we restrict our attention to the position of agent i at the
times when it chooses a new angle, and also to the final position. For simplicity, we denote
Yk = Xi,t′+km (0 ≤ k ≤ b − 1) and Yb = Xi,t+bm. Observe that

d(Yk+1, Yk) = ms, ∀k : 0 ≤ k ≤ b − 2, and d(Yb, Yb−1) = (m − h)s. (3.38)

Recall that, if αk denotes the angle in which agent i moves between Yk and Yk+1, then each
αk is selected uniformly and independently at random from the interval [0, 2π).

In order to prove the statement, we compute a lower bound on the probability of
a strategy that is sufficient for agent i to reach R at time t + bm. We start from an
arbitrary point Y0 ∈ [0, 1)2 and build a sequence of points Y0, . . . , Yb satisfying (3.38) such
that d(Yb,X) ≤ r/2. The strategy consists in imposing some restrictions on the angles
α0, . . . , αb. For the sake of simplicity in the geometrical descriptions, it is convenient to
allow Y0, . . . , Yb and X to lie in R

2 rather than into the torus [0, 1)2. Once the construction
of the sequence of points is completed, we map them back to the torus by the canonical
projection. Hence, we assume hereinafter that Y0 and X are two arbitrary points in R

2

such that d(Y0,X) ≤
√

2/2, which is the maximal distance in the torus [0, 1)2. For each k,
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0 ≤ k ≤ b − 4, we restrict αk to be in [θk − π/6, θk + π/6] (mod 2π), where θk is the angle

of
−−→
YkX with respect to the horizontal axis. We claim that, with this choice of angle, the

distance between Yk and X is decreased at each step by at least ms/3 until it is at most
ms. In fact by the law of cosines,

d(Yk+1,X) ≤
√(

d(Yk,X)
)2

+ (ms)2 −
√

3d(Yk,X)ms, (3.39)

and therefore, if d(Yk,X) > ms, we can write

d(Yk+1,X) ≤
√
(
d(Yk,X)

)2
+
(

1 +
2

3
−

√
3
)

(ms)2 − 2

3
d(Yk,X)ms

≤
√
(
d(Yk,X)

)2
+

1

9
(ms)2 − 2

3
d(Yk,X)ms

= d(Yk,X) − 1

3
ms. (3.40)

Otherwise, if d(Yk,X) ≤ ms, then from (3.39) we deduce that also

d(Yk+1,X) ≤
√

(1 −
√

3)
(
d(Yk,X)

)2
+ (ms)2 ≤ ms. (3.41)

We claim that d(Yb−3,X) ≤ ms. Suppose otherwise that d(Yb−3,X) > ms. Then in view
of (3.39), (3.40) and (3.41), for all k such that 0 ≤ k ≤ b − 4 we also have d(Yk,X) > ms,
and moreover

d(Yb−3,X) ≤ d(Y0,X) − (b − 3)
ms

3
≤

√
2

2
− (b − 3)

ms

3
≤ 0,

which contradicts the assumption, and proves the claim.
Now, let Z ∈ R

2 be the only point on the line containing Yb−3 and X satisfying
d(Z,X) = (m − h)s and such that X lies on the segment Yb−3Z. Moreover, denote by
W one of the two points on the perpendicular bisector of segment Yb−3Z which satisfy
d(W,Yb−3) = ms. We want to set the angles αb−3, αb−2 and αb−1 so that Yb−2, Yb−1 and
Yb are close to W , Z and X respectively. Indeed, if φb−3, φb−2 and φb−1 are respectively

the angles between the horizontal axis and
−−−−→
Yb−3W ,

−−→
WZ and

−−→
ZX, then by imposing that

αk ∈ [φk − ǫr/(ms), φk + ǫr/(ms)] (mod 2π) for some small enough ǫ > 0, we achieve that
d(Yb,X) ≤ r/2 and thus Yb ∈ R.

As a conclusion, the probability of choosing all the angles according to the strategy
described is

p := (1/6)b−3Θ
(
(r/(ms))3

)
,

and this completes the proof.

The next lemma allows us to apply Lemma 2.5.10.

Lemma 3.3.9. E(L(C)) < +∞ and E(L(D)) < +∞.

Proof. Fix one circle R ⊂ [0, 1)2 of radius r/2, and take b as in the statement of Lemma 3.3.8.
Since the agents choose their angles independently from each other, we have that, conditional
upon any arbitrary Xt, the probability that after bm steps all agents end up inside R is

P(Xt+bm ⊂ R | Xt) ≥ pn, (3.42)
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for some p = p(n) > 0. Observe that for any t ∈ Z the event (Xt ⊂ R) implies that G(Xt; r)
is a clique, since all pairs of vertices in Xt are at distance at most r, and thus G(Xt; r) is
connected. Consequently, for any d ∈ N, we can write

P

( d∧

k=0

Dt+kbm

)
≤ (1 − pn)P

( d−1∧

k=0

Dt+kbm

)
≤ P(Dt)(1 − pn)d. (3.43)

Notice that the equation Lt(D) =
∑∞

k=0 1[Dt] · · · 1[Dt+k], is satisfied pointwise, for
every element in the probability space (Xt)t∈Z. Therefore, by the Monotone Convergence
Theorem, (3.43) and the fact that p > 0, we conclude

E(Lt(D)) =

∞∑

k=0

P(Dt ∧ · · · ∧ Dt+k)

≤
∞∑

d=0

bmP

( d∧

k=0

Dt+kbm

)

≤ bmP(Dt)

∞∑

d=0

(1 − pn)d < +∞.

The same kind of argument shows that E(L(C)) < +∞. In this case we fix two circles
R and R′ in [0, 1)2 of radius r/2 with centres at distance greater than 2r. Observe that for
any t ∈ Z the event

(
(Xt \ {X1,t}) ⊂ R

)
∧ (X1,t ∈ R′) implies that G(Xt; r) is disconnected.

Moreover, from Lemma 3.3.8, we obtain an analogue to (3.42)

P
(

(Xt+bm \ {X1,t+bm}) ⊂ R
)
∧ (X1,t+bm ∈ R′) | Xt

)
≥ pn, (3.44)

and the argument follows as in the previous case but replacing D with C.

We are now ready to prove our main theorem which characterises the expected number
of steps the graph remains (dis)connected once it becomes (dis)connected.

Theorem 3.3.10.

LCav ∼ 1

(1 − e−EB)
=





π
4srn if srn = o(1),

1
(1−e−4srn/π)

if srn = Θ(1),

1 if srn = ω(1),

and

LDav ∼ eµ − 1

(1 − e−EB)
=





π(eµ−1)
4srn if srn = o(1),

eµ−1
(1−e−4srn/π)

if srn = Θ(1),

eµ − 1 if srn = ω(1).

Proof. By Lemma 3.3.9, we have that E(Lk(C)) < +∞, E(Lk(D)) < +∞. Then we can
apply Lemma 2.5.10, and the result follows by Corollaries 3.2.3 and 3.3.7.
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3.4 Conclusions.

In this chapter, we have introduced the dynamic random geometric graph and studied the
expected length of the connectivity and disconnectivity periods, considering different step
sizes s and different lengths m during which the angle remains invariant, always considering
the static connectivity threshold r = rc. We believe that a similar analysis can be performed
for other values of r as well.

The random walk mobility model simulates the behaviour of a swarm of mobile agents
as sensors or robots, which move randomly to monitor an unknown territory or to search
in it. There exist other models such as the way-point model, where each agent chooses
randomly a fixed way-point (from a set of pre-determined way-points) and moves there,
and when it arrives it chooses another and moves there, and so on [18]. A possible line
of future research is to use the techniques and results developed in this chapter to study
other models of mobility. Another line of work is to explore the behaviour of other graph
properties, such as the chromatic number or the clique number, as the dynamic random
geometric graphs evolve.





4

Sharp Threshold for Hamiltonicity

of Random Geometric Graphs

4.1 Introduction

Given a graph G on n vertices, a Hamiltonian cycle is a simple cycle that visits each
vertex of G exactly once. A graph is said to be Hamiltonian if it contains a Hamiltonian
cycle. The problem of given a graph, deciding if it is Hamiltonian or not is known to
be NP-complete [33]. Two known facts for the Hamiltonicity of random graphs are that
almost all d-regular graphs (d ≥ 3) are Hamiltonian [71], and that in the Gn,p model if
p(n) = (log n + log log n + ω(n))/n, then a.a.s. Gn,p is Hamiltonian [52] (see also chapter 8
of [15]).

Random geometric graphs are the randomised version of unit disk graphs. An undi-
rected graph is a unit disk graph if its vertices can be put into one-to-one correspondence
with circles of equal radius in the plane in such a way that two vertices are joined by an
edge iff their corresponding circles intersect [20]. The problem of deciding if a given unit
disk graph is Hamiltonian is known to be NP-complete [44].

A natural issue to study is the existence of Hamiltonian cycles in a random geomet-
ric graph G(X ; r) = G

(
X (n); r(n)

)
. Penrose in his book [66] posed it as an open problem

whether exactly at the point where G(X ; r) gets 2-connected, the graph also becomes Hamil-
tonian a.a.s. Petit in [68] proved that for r = ω(

√
log n/n), G(X ; r) is Hamiltonian a.a.s.

and he also gave a distributed algorithm to find a Hamiltonian cycle in G(X ; r) with his
choice of radius. In the present chapter, we find the sharp threshold of this property for a
random geometric graph over the unit square under any ℓp-normed distance. In fact, let
p (1 ≤ p ≤ ∞) be arbitrary but fixed throughout the chapter, and let G denote a random
geometric graph G(X ; r) over [0, 1]2 with respect to ℓp. Let αp be the area of the unit disk in
the ℓp norm, and recall from Section 2.2 that the connectedness of G has a sharp threshold
at r = r(n) =

√
log n/(αpn). We first show the following
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Theorem 4.1.1. The property that a random geometric graph G = G(X ; r) contains a

Hamiltonian cycle exhibits a sharp threshold at r =
√

log n
αpn , where αp is the area of the unit

disk in the ℓp norm. More precisely, for any ǫ > 0,

• if r =
√

log n
(αp+ǫ)n , then a.a.s. G contains no Hamiltonian cycle,

• if r =
√

log n
(αp−ǫ)n , then a.a.s. G contains a Hamiltonian cycle.

And as a corollary of the proof, we describe a linear time algorithm that finds a

Hamiltonian cycle in G(X ; r) a.a.s., provided that r ≥
√

log n
(αp−ǫ)n for some fixed ǫ > 0.

4.2 Proof of Theorem 4.1.1

To prove Theorem 4.1.1, note that the lower bound of the threshold is trivial. In fact, if r =√
log n

(αp+ǫ)n , then a.a.s. G is disconnected [65] and hence it cannot contain any Hamiltonian

cycle. To simplify the proof of the upper bound, we need some auxiliary definitions and

lemmas. In the remainder of the section, we assume that r =
√

log n
(αp−ǫ)n for some fixed ǫ > 0,

and we show that a.a.s. G contains a Hamiltonian cycle.

Let us take y =
⌈

2
r

⌉−1
. Intuitively, y is close to r/2 but slightly smaller. We divide

[0, 1]2 into squares of side length y. Call this the initial tessellation of [0, 1]2. Two different
squares R and S are defined to be friends if they are either adjacent (i.e., they share at least
one corner) or there exists at least one other square T adjacent to both R and S. Thus,
each square has at most 24 friends. Then, we create a second and finer tessellation of [0, 1]2

by dividing each square into k2 new squares of side length y/k ∼ r/(2k), for some large
enough but fixed k = k(ǫ) ∈ N. We call this the fine tessellation of [0, 1]2, and we refer to
these smaller squares as cells. We note that the total numbers of squares and cells are both
Θ(1/r2). Note that with probability 1, for every fixed n, any vertex will be contained in
exactly one cell (and in exactly one square). In the following we always assume this.

We say that a cell is dense, if it contains at least 48 vertices of G. If the cell contains
at least one vertex but less than 48 vertices, we say the cell is sparse. If the cell contains no
vertex, the cell is empty. Furthermore we define an animal to be a union of cells which is
topologically connected. The size of an animal is the number of different cells it contains. In
particular, the squares of the initial tessellation of [0, 1]2 are animals of size k2. An animal
is called dense if it contains at least one dense cell. If an animal contains no dense cell, but
it contains at least one vertex of G, it is called sparse.

From hereinafter, all distances in [0, 1]2 will be taken in the ℓp metric. As usual, the
distance between two sets of points P1 and P2 in [0, 1]2 is the infimum of the distances
between any pair of points in P1 and P2. Two cells c1 and c2 are said to be close to each
other if

sup
p1∈c1,p2∈c2

{distance(p1, p2)} ≤ r.

For an arbitrary cell c at distance at least r from the boundary of [0, 1]2, let K = K(n) be
the number of cells which are close to c and also above and to the right of c. Obviously, K
does not depend on the particular cell we chose.
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Figure 4.1: Set of cells close, above and to the right of the shaded cell

Lemma 4.2.1. For any η > 0, we can choose k sufficiently large such that K > (αp − η)k2

for n large enough.

Proof. Let c be a cell at distance at least r from the boundary of [0, 1]2. Call A the union
of the cells which are close to c and also above and to the right of c. Let p be the top right
corner point of c. Define the set

B = {q ∈ [0, 1]2 ∩ R : distance(p, q) ≤ r − 4y/k},

where R is the set of points which are above and to the right of p. Observe that B ⊆ A.
Moreover, if k is chosen large enough, the area of B is at least 1

4 (αp−η)r2. Thus, A contains
at least 1

4 (αp − η)r2/(y/k)2 > (αp − η)k2 cells.

Lemma 4.2.2. The following statements are true a.a.s.

(i). All animals of size 4K are dense.

(ii). All animals of size 2K which touch any of the four sides of [0, 1]2 are dense.

(iii). All cells at distance less than 4y from two sides of [0, 1]2 are dense.

Proof. Let 0 < δ < ǫ. Taking into account that the side length of each cell is y/k ≥
1
2k

√
log n

(αp−δ)n (but also y/k ≤ c
√

log n/n for some c > 0), the probability that any given cell

is not dense (i.e., it contains at most 47 vertices) is

47∑

i=0

(
n

i

)(
y2

k2

)i(
1 − y2

k2

)n−i

= Θ(1)n47

(
y2

k2

)47(
1 − y2

k2

)n

,

since the weight of this sum is concentrated in the last term. Then, plugging in the bounds
for y/k, we get that the probability above is

O(1)(ny2/k2)47e−y2n/k2
= O(1)(log n)47n

− 1
4k2(αp−δ) .

For each one of the cells of a given animal, we can consider the event that this particular
cell is not dense. Notice that these events are negatively correlated, as the probability that
any particular cell is not dense conditional upon having some other cells with at most 47
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vertices is not greater than the unconditional probability. Thus, the probability that a given
animal of size 4K contains no dense cell is at most

(
O(1)(log n)47n

− 1
4k2(αp−δ)

)4K

= O(1)(log n)Cn
− K

k2(αp−δ) ,

for some constant C. Let ρ = K
k2(αp−δ)

. From Lemma 4.2.1 applied with any 0 < η < δ,

by choosing k sufficiently large, we can guarantee that ρ > 1. Now note that the number
of animals of size 4K is O(1/r2) since for each fixed shape of an animal there are O(1/r2)
many choices and there is only a constant number of shapes. Thus, by taking a union bound
over all animals and plugging in the value of r, we get that the probability of having an
animal without any dense cell is

O(1)(log n)C−1/nρ−1 = o(1),

and (i) holds.

An analogous argument shows that any given animal of size 2K is not dense with
probability

O(1)(log n)C/2n−ρ/2.

Observe that there exist only O(1/r) animals touching any of the four sides of [0, 1]2. Hence,
the probability that one of these is not dense is

O(1)(log n)(C−1)/2/n(ρ−1)/2 = o(1),

and (ii) is proved.

To prove (iii), we simply recall that the probability that a given cell is not dense is
o(1). By taking a union bound, the same argument holds for a constant number of cells.

Lemma 4.2.3. A.a.s., for any cell c1, there exists a cell c2 which is dense and close to c1.

Proof. Let S be the square of the initial tessellation of [0, 1]2 where c1 is contained, and let
A be the animal containing all the cells which are close to c1 but different from c1. Suppose
that S is at distance at least 2y from all sides of [0, 1]2. Then, A has size greater than 4K,
and it must contain some dense cell by Lemma 4.2.2 (i) a.a.s.

Otherwise, suppose that S is at distance less than 2y from just one side of [0, 1]2.
Then, A has size greater than 2K and it touches one side of [0, 1]2, and thus it must contain
some dense cell by Lemma 4.2.2 (ii) a.a.s.

Finally, if S is at distance less than 2y from two sides of [0, 1]2, then all cells in that
square must be dense by Lemma 4.2.2 (iii) a.a.s.

We now consider the following auxiliary graph G′: the vertices of G′ are all those
squares belonging to the initial tessellation of [0, 1]2 which are dense, and there is an edge
between two dense squares R and S if they are friends and there exist cells c1 ⊂ R and
c2 ⊂ S which are dense and close to each other. We observe that the maximal degree of G′

is 24.

Lemma 4.2.4. A.a.s., G′ is connected.
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Proof. Suppose for contradiction that G′ contains at least two connected components Γ1

and Γ2. We denote by D the union of all dense cells which are contained in some vertex
(i.e., dense square) of Γ1, and let H ⊇ D be the union of all cells which are close to some cell
contained in D. Note that H is topologically connected, and let the closed curve γ be the
outer boundary of H with respect to R

2. Each connected part obtained by removing from
γ the intersection with the sides of [0, 1]2 is called a piece of γ. Define by E the union of all
cells in H but not in D. In general, E might have several connected components (animals).
Moreover, all cells in E must be not dense, by construction. Note that any cell in D cannot
touch any piece of γ. Hence, each piece of γ is touched by exactly one connected component
A ⊆ E. Observe that, if γ touches some side of [0, 1]2, then all connected components of E
touching some piece of γ must also touch some side of [0, 1]2.

Given any of the four sides s of [0, 1]2, the distance between s and Γ1 is understood
to be the distance between s and the dense square of Γ1 which has the smallest distance to
s. We now distinguish between a few cases depending on the fact whether Γ1 is at distance
less than 2y from one (or more) side(s) of [0, 1]2 or not.

Case 1. Γ1 is at distance at least 2y from any side of [0, 1]2.
In this case, let A be the only connected component of E which touches γ. Consider the
uppermost dense cell c ⊂ D (if there are several ones, choose an arbitrary one) and the
lowermost dense cell d ⊂ D (possibly equal to c). Then all cells which are close to c and
above c and all cells which are close to d and below d belong to A. Since there are at least
as many as 4K of these, we have an animal A of size at least 4K without any dense cell,
which by Lemma 4.2.2 (i) does not happen a.a.s.

Case 2. Γ1 is at distance less than 2y from exactly one side of [0, 1]2.
W.l.o.g. we can assume that Γ1 is at distance less than 2y from the bottom side of [0, 1]2.
Consider the uppermost dense cell c ⊂ D (if there are several ones, choose an arbitrary
one). Let A be the connected component of E which contains all cells which are close to c
and above c. Note that there are at least as many as 2K of these cells. Moreover, A touches
one of the pieces of γ. Hence, we have an animal A of size at least 2K without any dense
cell and that touches some side of [0, 1]2. By Lemma 4.2.2 (ii) this does not happen a.a.s.

Case 3. Γ1 is at distance less than 2y from two opposite sides of [0, 1]2.
W.l.o.g. we can assume that Γ1 is at distance less than 2y from the top and the bottom
sides of [0, 1]2. Among all cells contained in squares of Γ1 that are at distance less than 4y
from the top side of [0, 1]2, consider the rightmost dense cell c. If c is at distance less than
2y from that side, consider all K cells which are close to c and below and to the right of c.
Otherwise, if c is at distance at least 2y from that side, consider all K cells which are close
to c and above and to the right of c. Let A be the connected component of E containing
these cells. Similarly, among all cells contained in squares of Γ1 that are at distance less
than 4y from the bottom side of [0, 1]2, consider the rightmost dense cell d. Again, if d is
at distance less than 2y from that side, consider all K cells which are close to d and above
and to the right of d. Otherwise, if d is at distance at least 2y from that side, consider all K
cells which are close to d and below and to the right of d. Thus, in either case, we obtain K
cells pairwise different from the K previously described ones, and let A′ be the connected
component containing them. A and A′ must be the same, since they touch the same piece
of γ. Hence, we have an animal A of size at least 2K touching at least one side of [0, 1]2

and without any dense cell. By Lemma 4.2.2 (ii) this does not happen a.a.s.
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Case 4. Γ1 is at distance less than 2y from one vertical and one horizontal sides of [0, 1]2.
W.l.o.g. we can assume that Γ1 is at distance less than 2y from the left and the top sides
of [0, 1]2. Among all cells contained in squares of Γ1 that are at distance less than 4y from
the top side of [0, 1]2, consider the rightmost dense cell c. If c is at distance less than 2y
from that side, consider all K cells which are close to c and below and to the right of c.
Otherwise, if c is at distance at least 2y from that side, consider all K cells which are close
to c and above and to the right of c. Let A be the connected component of E containing
all these K cells. By construction, all these K cells are at distance less than 4y from the
top side of [0, 1]2. Then, by Lemma 4.2.2 (iii), they must be a.a.s. at distance at least 4y
from the left side of [0, 1]2, since otherwise they would be all dense. Similarly, among all
cells contained in squares of Γ1 that are at distance less than 4y from the left side of [0, 1]2,
consider the lowermost dense cell d. Again, if d is at distance less than 2y from that side,
consider all K cells which are close to d and below and to the right of d. Otherwise, if d is
at distance at least 2y from that side, consider all K cells which are close to d and below
and to the left of d. Let A′ be the connected component of E containing these K cells. By
construction, all these K cells are at distance less than 4y from the left side of [0, 1]2, and
hence they must be pairwise different from the K ones previously described a.a.s. (note
that we used Lemma 4.2.2 (iii) to prove that the K cells contained in A described above
must be at distance at least 4y from the top side of [0, 1]2). Moreover, A and A′ must be
the same, since they touch the same piece of γ. Then we have an animal A of size at least
2K touching at least one side of [0, 1]2 without any dense cell. By Lemma 4.2.2 (ii) this
does not happen a.a.s.

Case 5. Γ1 is at distance less than 2y from three sides of [0, 1]2.
W.l.o.g. we can assume that Γ1 is at distance less than 2y from the left, top and bottom
sides of [0, 1]2. The argument is exactly the same as in Case 3, and hence this case does not
occur a.a.s.

In case Γ2 is at distance at least 2y from some side of [0, 1]2, we can apply one of the
above cases with Γ2 instead of Γ1. Thus, it suffices to consider the following:

Case 6. Both Γ1 and Γ2 are at distance less than 2y from all four sides of [0, 1]2.
Let Q be the union of all those cells at distance less than 4y from both the bottom and left
sides of [0, 1]2. By Lemma 4.2.2, all the cells in Q must be dense, and thus must belong
to squares of the same connected component of G′. W.l.o.g., we can assume that they are
not in D (i.e. are not contained in squares of Γ1). Among all cells contained in squares of
Γ1 that are at distance less than 4y from the bottom side of [0, 1]2, consider the leftmost
dense cell c. If c is at distance less than 2y from that side, consider all K cells which are
close to c and above and to the left of c. Otherwise, if c is at distance at least 2y from that
side, consider all K cells which are close to c and below and to the left of c. Let A be the
connected component of E containing all these K cells. By construction, all these K cells
are at distance less than 4y from the bottom side of [0, 1]2. Then, by Lemma 4.2.2 (iii),
they must be a.a.s. at distance at least 4y from the left side of [0, 1]2, since otherwise they
would be all dense. Similarly, among all cells contained in squares of Γ1 that are at distance
less than 4y from the left side of [0, 1]2, consider the lowermost dense cell d. Again, if d is
at distance less than 2y from that side, consider all K cells which are close to d and below
and to the right of d. Otherwise, if d is at distance at least 2y from that side, consider all K
cells which are close to d and below and to the left of d. Let A′ be the connected component
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of E containing all these K cells. By construction, all these K cells are at distance less
than 4y from the left side of [0, 1]2, and hence they must be pairwise different from the K
ones previously described a.a.s. Moreover, A and A′ must be the same, since they touch
the same piece of γ. Then we have an animal A of size at least 2K touching at least one
side of [0, 1]2 without any dense cell. By Lemma 4.2.2 (ii) this does not happen a.a.s.

Proof of the upper bound of Theorem 4.1.1. Starting from G′ we construct a new graph G′′,
by adding some new vertices and edges as follows. Let us consider one fixed sparse square
S of the initial tessellation of [0, 1]2. For each sparse cell c contained in S, we can a.a.s.
find at least one dense cell close to it (by Lemma 4.2.3) which we call the hook cell of c
(if this cell is not unique, or even the square containing these cell(s) is not unique, take an
arbitrary one). This hook cell must lie inside some dense square R, which is a friend of S.
Then, that sparse cell c gets the label R. By grouping those ones sharing the same label, we
partition the sparse cells of S into at most 24 groups. Each of these groups of sparse cells
will be thought as a new vertex, added to graph G′ and connected by an edge to the vertex
of G′ described by the common label. By doing this same procedure for all the remaining
sparse squares, we obtain the desired graph G′′. Those vertices in G′′ which already existed
in G′ (i.e., dense squares) are called old, and those newly added ones are called new. Notice
that by construction of G′′ and by Lemma 4.2.4, G′′ must be connected a.a.s.

Figure 4.2: Illustration of G′′

Now, consider an arbitrary spanning tree T of G′′. Observe that the maximal degree
of T is 24, and that all new vertices of T have degree one and are connected to old vertices.
We use capital letters U , V to denote vertices of T and reserve the lowercase u, v,w for
vertices of G. Fix an arbitrary traversal of T which, starting at an arbitrary vertex, traverses
each edge of T exactly twice and returns to the starting vertex. Note that such a traversal
always exists: fix an arbitrary vertex of T to be the root vertex and always follow the edge
going to the leftmost neighbour of that vertex (the vertex with smallest x-coordinate, and
if there are more, the one among them with the smallest y-coordinate) which was not yet
visited. Do this recursively for each vertex. When all neighbours of a vertex are visited, we
go back to the vertex we came from. We iterate this procedure until all vertices are visited
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and we are back at the root vertex. This traversal gives an ordering in which we construct
our Hamiltonian cycle in G (i.e., as the Hamiltonian cycle travels along the vertices of G, it
will visit the vertices of T according to this traversal).

Let us give a constructive description of our Hamiltonian cycle. Suppose that at some
time we visit an old vertex U of T and that the next vertex V (w.r.t. the traversal) is also
old. Then, there must exist a pair of dense cells c1 ⊂ U , c2 ⊂ V close to each other, and
let u ∈ c1 and v ∈ c2 be vertices not used so far. In case this is not the last time we visit U
(w.r.t. the traversal), immediately after entering vertex w inside U we connect w to u and
then u is connected to v. If U is visited for the last time (w.r.t. the traversal), we connect
from the entering vertex w all vertices inside U not yet used by an arbitrary Hamiltonian
path (note that they form a clique in G) before leaving U via u, and subsequently we connect
u to v.

Otherwise, suppose that at some time we visit an old vertex U of T and that the next
vertex V (w.r.t. the traversal) is new. We connect all the vertices inside V (possibly just
one) by an arbitrary Hamiltonian path, whose endpoints lie inside the sparse cells d1 ⊂ V
and d2 ⊂ V (possibly equal). Again this is possible since these vertices form a clique in G.
Let c1 ⊂ U and c2 ⊂ U (possibly equal) be the hook cells of d1 and d2 (i.e., ci is a dense
cell in U close to the sparse cell di in V ). Let u ∈ c1 and v ∈ c2 be vertices not used so far.
Then, immediately after entering vertex w inside U we connect w to u and then u is joined
to the corresponding endpoint of the Hamiltonian path connecting the vertices inside V .
The other endpoint is connected to v, and so we visit again U .

We observe that at some steps of the above construction we request for unused vertices
of G. This is always possible: in fact, each vertex of T is visited as many times as its degree
(at most 24); for each visit of an old vertex U our construction requires exactly two unused
vertices v ∈ c, w ∈ c inside some dense cell c ⊂ U ; and c contains at least 48 vertices. By
construction, the described cycle is Hamiltonian and the result holds.

In the following corollary, we give an informal definition of a linear time algorithm
that constructs a Hamiltonian cycle for a specific instance of G(X ; r). The procedure is
based on the previous constructive proof. We assume that real arithmetic can be done in
constant time.

Corollary 4.2.5. Let r ≥
√

log n
(αp−ǫ)n , for some fixed ǫ > 0. The proof of Theorem 4.1.1

yields an algorithm that a.a.s. produces a Hamiltonian cycle in G
(
X (n); r(n)

)
in linear

time with respect to n.

Proof. Assume that the input graph satisfies all the conditions required in the proof of
Theorem 4.1.1, which happens a.a.s. Assume also that each vertex of the input graph is
represented by a pair of coordinates. Observe that the total number of squares is O(n/ log n),
and since the number of cells per square is constant, the same holds for the total number of
cells. First we compute in linear time the label of the cell and the square where each vertex
is contained. At the same time, we can find for each cell (and square) the set of vertices it
contains, and mark those cells (squares) which are dense. Now, for the construction of G′,
note that each dense square has at most a constant number of friends to which it can be
connected. Thus, the edges of G′ can be obtained in time O(n/ log n). In order to construct
G′′, for each of the O(n/ log n) cells in sparse squares, we compute in constant time its hook
cell and the dense square containing it. Since both the number of vertices and the number
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of edges of G′′ are O(n/ log n), we can compute in time O(n) (e.g., by Kruskal’s algorithm)
an arbitrary spanning tree T of G′′. The traversal and construction of the Hamiltonian
cycle is proportional to the number of edges in T plus the number of vertices in G and thus
can be done in linear time.

4.3 Conclusion and Outlook

We believe that the above construction can be generalised to obtain sharp thresholds for
Hamiltonicity for random geometric graphs in [0, 1]d (d being fixed). However, it seems
much more difficult to generalise the results to arbitrary distributions of the vertices. The
problem posed by Penrose [66], whether exactly at the point where G(X ; r) gets 2-connected
the graph also becomes Hamiltonian a.a.s. or not, still remains open.
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