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Abstract

We study the arboricity A and the maximum number T of edge-disjoint spanning
trees of the classical random graph G (n, p). For all p(n) ∈ [0, 1], we show that, with
high probability, T is precisely the minimum between δ and bm/(n − 1)c, where δ is
the smallest degree of the graph and m denotes the number of edges. Moreover, we
explicitly determine a sharp threshold value for p such that: above this threshold, T
equals bm/(n−1)c and A equals dm/(n−1)e; and below this threshold, T equals δ, and
we give a two-value concentration result for the arboricity A in that range. Finally, we
include a stronger version of these results in the context of the random graph process
where the edges are sequentially added one by one. A direct application of our result
gives a sharp threshold for the maximum load being at most k in the two-choice load
balancing problem, where k →∞.

1 Introduction

STP number and arboricity: The spanning-tree packing (STP) number of a graph is the
maximum number of edge-disjoint spanning trees it contains. Computing this parameter is a
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very classical problem in combinatorial optimization. One of the earliest results on the STP
number is a min-max relation proved by Tutte [42] and Nash-Williams [34]: the STP number
of a graph is the minimum value, ranging over all partitions P of the vertex set, of the ratio
(rounded down) between the number of edges across P (i.e. edges with ends lying in different
classes of P) and |P| − 1. This characterisation has important consequences in computer
science, where the STP number has been used as a measure of network vulnerability in case
of attack or edge failure (see [23, 10]). Intuitively speaking, it provides information about
the number of edges that must be destroyed in a connected network in order to create a given
number of new components. In addition, finding edge-disjoint spanning trees in a graph is
relevant to the design of efficient and robust communication protocols (see e.g. a seminal
article by Itai and Rodeh [25]). There are two obvious upper bounds on the STP number of
a graph with n vertices: the minimum degree, since each spanning tree would need to use
at least one edge incident to each vertex; and the number of edges divided by n − 1, since
each spanning tree has exactly n− 1 edges. For further information on the STP number, we
refer the reader to a survey by Palmer [36] on this topic.

Another closely related graph parameter that has been widely studied is the arboricity of
a graph — i.e. the minimum number of subforests needed to cover all of its edges. A trivial
lower bound on the arboricity of a graph with n vertices is the number of edges divided by
n−1, since we cannot do better than covering all the edges with a set of edge-disjoint spanning
trees. Nash-Williams [35] also provided a min-max relation for the arboricity of a graph,
which yields a natural interpretation of arboricity as a measure of density of the subgraphs
of a graph. This makes arboricity a useful notion in computer science, since the problem of
determining the existence of dense subgraphs in large graphs is relevant to many applications
in real world domains like social networking or internet computing. In fact, finding such
dense subgraphs and other related problems can often be efficiently solved in linear time for
any class of graphs with bounded arboricity (see [8, 22]). This includes important families
of graphs such as all minor-closed classes (e.g. planar graphs and graphs with bounded
treewidth) and random graphs generated by the preferential attachment model. Another
relevant feature of arboricity is its intimate connection with the k-orientability of a graph
and its application to certain load-balancing problems (see the discussion below on this
topic).

Finding the STP number and the arboricity of a given graph are among the most success-
ful applications of matroids in combinatorial optimization. Both problems can be formulated
as matroid union problems and thus can be solved in polynomial time. For more details,
see [40, Chapter 51].

Arboricity, k-orientability and load balancing: The k-orientability problem is that
of determining whether a graph admits an orientation of its edges so that each vertex has
indegree at most k. As established by Hakimi [24], the k-orientability of a graph is deter-
mined by the density of the densest subgraph, which brings a strong connection between
k-orientability and arboricity. On the other hand, the k-orientability problem of a (random)
graph on n vertices and m edges is equivalent to determining whether the maximum load
is at most k in the following load-balancing scenario: m balls (jobs) are assigned to n bins
(machines) in a way that each ball must pick between two randomly chosen bins, and we
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wish to minimise the load of the bins by allowing at most k balls in each bin. This subject
has received a lot of attention, since the seminal result by Azar, Broder, Karlin and Upfal [1]
on the multiple-choice paradigm of load balancing. They consider a related online setting in
which n balls are sequentially thrown into n bins, and each ball is allowed to choose between
h given random bins; and prove that the maximum load among all bins can be significantly
reduced if each ball has h ≥ 2 choices rather than one. Research on the power of choice
in load balancing has since been very fruitful. We refer readers to the survey by Mitzen-
macher, Richa and Sitaraman [31] for a detailed account of the topic. Cain, Sanders and
Wormald [5] and Fernholz and Ramachandran [14] simultaneously determined a threshold
for a random graph (corresponding to h = 2) to be k-orientable. The random hypergraph
case (h ≥ 2) was studied by a few authors due to its applications in Cuckoo hashing [12]
and disk scheduling [5]. See [12, 18, 16] for h ≥ 2 and k = 1, and [15] for h ≥ 2 and
general k. A more general case where each ball can take 1 ≤ w ≤ h copies and be assigned
to w distinct bins was studied by the first author and Wormald [21] for sufficiently large
but constant k. Lelarge closed the gap for small values of k in [29]. For m/n ≥ C log n,
where C > 0 is sufficiently large, Czumaj, Riley and Scheideler [11] proved that G (n,m)
(the random graph on n vertices and m edges with uniform distribution) is a.a.s. dm/ne-
orientable. The only case left open for the k-orientability problem is m/n = O(log n) with
m/n → ∞. Sanders, Egner and Korst [39] proved that G (n,m) is (dm/ne + 1)-orientable
(and of course not b(m − 1)/nc-orientable), implying that the k-orientability threshold for
G (n,m), for m/n→∞, is kn with a window of size O(1/k) = o(1) inside which we cannot
determine whether it is k-orientable or not. In this paper, we will squeeze the window of
uncertainty to a much smaller size. One conceivable difference between this last case and
the one covered in [11] is the following. If m/n ≥ C log n for sufficiently large C, all degrees
(including the minimum and maximum degree) of G (n,m) are very close to the average de-
gree. However, if m/n grows slowly as n grows, the minimum degree of G (n,m) is likely to
be 0 while its average degree is large. Intuitively, load should balance “better” for a growing
large parameter k rather than a bounded one, but the previous proofs in [5, 14] dealing with
constant k do not generalise to k → ∞. An online version of load balancing was studied
by Berenbrink, Czumaj, Steger and Vöcking [2], where the case m = ω(n) was particularly
investigated.

STP number and arboricity of a random graph: It is then relevant to study the
behaviour of the STP number and the arboricity for the classical random graph G (n, p),
in which the vertex set is [n] and each of the

(
n
2

)
possible edges is included independently

with probability p (where p = p(n) is a function of n). It is a well-known fact that, for
p = (log n−ω(1))/n, the random graph G (n, p) is a.a.s.1 disconnected (see e.g. Theorem 7.3
in [3]), and hence the STP number is zero. Palmer and Spencer [37] showed that a.a.s. the
STP number of G (n, p) equals the minimum degree whenever this has constant value, which
tipically happens when p is around (log n+O(log log n))/n. In fact, they proved a stronger
hitting-time result in the context of the evolution of G (n, p) when p moves gradually from
0 to 1, and showed that a.a.s. the precise time when the minimum degree first becomes k
(for constant k) coincides with the time when k edge-disjoint spanning trees first appear.

1We say that a sequence of events Hn holds asymptotically almost surely (a.a.s.) if limn→∞Pr(Hn) = 1.
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Moreover, Catlin, Chen and Palmer [6] studied the denser case of p = C(log n/n)1/3, where
C > 0 is a sufficiently large constant, and determined the STP number and the arboricity of
G (n, p) to be a.a.s. equal to bm/(n−1)c and dm/(n−1)e, respectively, where m denotes the
number of edges. In a recent unpublished manuscript, Chen, Li and Lian [7] proved that, for
any (log n+ω(1))/n ≤ p ≤ 1.1 log n/n, a.a.s. the STP number of G (n, p) equals the minimum
degree. They also observed that this property a.a.s. does not hold for p ≥ 51 log n/n, and
posed the question of what is the smallest value of p such that the STP number of G (n, p)
differs from the minimum degree.

Outline of our contribution: In this paper we strengthen the previous work, and char-
acterise the STP number and the arboricity of G (n, p). A direct application of our results
gives a sharp threshold for the maximum load being at most k in the two-choice load bal-
ancing problem, where k → ∞. Our methods rely on a successful combination of some
combinatorial optimisation tools together with several probabilistic techniques, and may be
hopefully extended in future research to address other relevant related problems in the area.
We first prove that for all p(n) ∈ [0, 1], the STP number is a.a.s. the minimum between δ
and bm/(n− 1)c, where δ and m respectively denote the minimum degree and the number
of edges of G (n, p) (see Theorem 1). Note that the quantities δ and bm/(n− 1)c above cor-
respond to the two trivial upper bounds observed earlier for arbitrary graphs, so this implies
that we can a.a.s. find a best-possible number of edge-disjoint spanning trees in G (n, p). Our
argument uses several properties of G (n, p) in order to bound the number of crossing edges
between subsets of vertices with certain restrictions, and then applies the characterisation
of the STP number by Tutte and Nash-Williams restated as Theorem 8. Moreover, we de-
termine the ranges of p for which the STP number takes each of these two values: δ and
bm/(n − 1)c. In spite of the fact that the property {δ ≤ bm/(n − 1)c} is not necessarily
monotonic with respect to p, we show that it has a sharp threshold at p ∼ β log n/n, where
β ≈ 6.51778 is a constant defined in Theorem 2. Below this threshold, the STP number of
G (n, p) is a.a.s. equal to δ; and above the threshold it is a.a.s. bm/(n − 1)c. In particular,
this settles the question raised by Chen, Li and Lian [7]. We also include a stronger version
of these results in the context of the random graph process in which p gradually grows from
0 to 1 (or, similarly, the edges are added one by one). This provides a full characterisation
of the STP number that holds a.a.s. simultaneously during the whole random graph process
(see Theorem 3). The argument combines a more accurate version of the same ideas used
in the analysis of the STP number of G (n, p) together with multiple couplings of G (n, p) at
different values of p. In addition, the article contains several results about the arboricity of
G (n, p). As an almost direct application of our result on the STP number, for p above the
threshold β log n/n, we determine the arboricity of G (n, p) to be a.a.s. equal to dm/(n−1)e.
This significantly extends the range of p in the result by Catlin, Chen and Palmer [6]. We
further prove that for all other values of p, the arboricity of G (n, p) is concentrated on at
most two values (see Theorem 4). In order to prove this for the case pn → ∞, we add
o(n) edges to G (n, p) in a convenient way that guarantees a full decomposition of the re-
sulting graph into edge-disjoint spanning trees. This construction builds upon some of the
ideas that we previously use to study the STP number. The case pn = O(1) uses differ-
ent proof techniques which rely on the structure of the k-core of G (n, p) together with the
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Nash-Williams characterisation of arboricity restated as Theorem 9. Finally, some of the
aforementioned results on the arboricity are also given in the more precise context of the
random graph process (see Theorem 5 and Corollary 6), similarly as we did for the STP
number. As a direct corollary of our result on arboricity, we determine a sharp threshold
for the k-orientability of G (n,m) where k → ∞ (see Theorem 7). This successfully settles
the load-balancing problem in the scenario where m = ω(n) balls are allocated into n bins,
and each ball has two choices, uniformly at random chosen from [n]. We prove that in this
case, balls can be allocated so that most bins receive an almost even load. This extends the
result by Cain, Sanders and Wormald [5] and Fernholz and Ramachandran [14] to the case
of k →∞.

Related work: Recently, Swamy, Bhashyam, Sundaresan and Viswanath [41] studied sev-
eral versions of network flow problems on random graphs. In particular, they obtained an
almost sure convergence result which implies that the STP of G (n, p) is a.a.s. (1 + o(1))pn/2
as long as p = ω(

√
log n/n). The behaviour of the STP number and the arboricity has

been also studied in other models of random graphs. Frieze and  Luczak [19] considered the
random directed graph in which each vertex chooses k out-neighbours uniformly at random,
with fixed k. This graph has k disjoint spanning trees with probability going to 1 (where
the orientation of the arcs is ignored). Cooper [9] upper-bounded the arboricity of G (n, p)
for p = Ω(1/n) and used that to obtain an upper bound of the thickness of G (n, p): the
minimum number of edge-disjoint planar graphs which cover all edges in G (n, p).

Some variants of arboricity have also been studied. The linear arboricity of a graph is the
minimum number of forests consisting only of paths needed to cover all edges of the graph.
This parameter was studied by McDiarmid and Reed [30] for random regular graphs.

2 Main results

Let G (n, p) denote the random graph with vertex set [n] such that each possible edge in
{{u, v} : u, v ∈ [n], u 6= v} is included independently with probability p. In this article,
we regard p as a function of n, and consider asymptotic statements as n → ∞. Given a
sequence of events (Hn)n∈N, we say that Hn happens asymptotically almost surely (a.a.s.) if
Pr(Hn) → 1 as n → ∞. Given real sequences an and bn (possibly taking negative values),
we write: an = O(bn) if there is a constant C > 0 such that |an| ≤ C|bn| for all n; an = o(bn)
if eventually bn 6= 0 and limn→∞ an/bn = 0; an = Ω(bn) if eventually an ≥ 0 and bn = O(an);
an = ω(bn) if eventually an ≥ 0 and bn = o(an); an = Θ(bn) if eventually an ≥ 0, an = O(bn)
and an = Ω(bn); and finally an ∼ bn if an = (1 + o(1))bn. In particular, in this paper, all
constants involved in these notations do not depend on the p under discussion. For instance,
if we have an = Ω(bn), where bn may be an expression involving p = p(n), then it means that
there are constants C > 0 and n0 (both independent of p), such that an ≥ C|bn| uniformly
for all n ≥ n0 and for all p in the range under discussion. We also assume in this paper
that n is greater than some absolute constant (e.g. in a few places we require n ≥ 2), which
does not depend on any variables under discussion. We often omit this assumption in the
statements of lemmas and theorems.

Given a graph G, let m(G) be the number of edges of G and let δ(G) denote the minimum
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degree of G. Let T (G) be the STP number of G — i.e. the maximum number of edge-disjoint
spanning trees in G (possibly 0 if G is disconnected).

Theorem 1. For every p = p(n) ∈ [0, 1], we have that a.a.s.

T (G (n, p)) = min

{
δ(G (n, p)),

⌊
m(G (n, p))

n− 1

⌋}
.

Theorem 2. Let β = 2/ log(e/2) ≈ 6.51778. Then

(i) if p = β(logn−log logn/2)−ω(1)
n−1 , then a.a.s. δ(G (n, p)) ≤

⌊m(G (n,p))
n−1

⌋
and so T (G (n, p)) =

δ(G (n, p));

(ii) if p = β(logn−log logn/2)+ω(1)
n−1 , then a.a.s. δ(G (n, p)) >

⌊m(G (n,p))
n−1

⌋
and so T (G (n, p)) =⌊m(G (n,p))

n−1

⌋
.

Consider the random graph process G0, G1, . . . , G(n2)
defined as follows: for each m =

0, . . . ,
(
n
2

)
, Gm is a graph with vertex set [n]; the graph G0 has no edges; and, for each

1 ≤ m ≤
(
n
2

)
, the graph Gm is obtained by adding one new edge to Gm−1 chosen uniformly

at random among the edges not present in Gm−1. Equivalently, we can choose uniformly at
random a permutation (e1, . . . , e(n2)

) of the edges of the complete graph with vertex set [n],

and define each Gm to be the graph on vertex set [n] and edges e1, . . . , em.
The following theorem is a strengthening of Theorems 1 and 2 in the context of the

random graph process just described. Note that the a.a.s. statements in Theorem 3 refer to
events that hold simultaneously for all m in a certain specified range, as we add edges one
by one.

Theorem 3. Let β = 2/ log(e/2) ≈ 6.51778. The following holds in the random graph
process G0, G1, . . . , G(n2)

.

(i) A.a.s. T (Gm) = min
{
δ(Gm),

⌊
m/(n− 1)

⌋}
for every 0 ≤ m ≤

(
n
2

)
.

(ii) Moreover, for any constant ε > 0, a.a.s.

• δ(Gm) ≤
⌊
m/(n− 1)

⌋
for every 0 ≤ m ≤ (1−ε)β

2
n log n, and

• δ(Gm) >
⌊
m/(n− 1)

⌋
for every (1+ε)β

2
n log n ≤ m ≤

(
n
2

)
.

Remark. We will actually prove a stronger result than Theorem 3 (ii). See Theorem 27
in Section 7.

For any graph G, let A(G) denote the arboricity of G, i.e. the minimum number of
subforests of G which cover the whole edge set of G. Let R≥1 denote the set of positive real
numbers that are greater than one.

Theorem 4. Let β = 2/ log(e/2) ≈ 6.51778.

(i) For all p = β(logn−log logn/2)+ω(1)
n−1 , a.a.s. A(G (n, p)) =

⌈m(G (n,p))
n−1

⌉
; for all p = ω(1/n),

a.a.s. A(G (n, p)) ∈ {
⌈m(G (n,p))

n−1

⌉
,
⌈m(G (n,p))

n−1

⌉
+ 1};
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(ii) For all p = Θ(1/n), there exist a constant C > 0 and k = Θ(1) (both depending on
p) such that a.a.s. A(G (n, p)) ≥ (1 + C)pn/2 and A(G (n, p)) ∈ {k, k + 1}. Moreover,
there is a countable set of real numbers J such that, for all c ∈ R≥1 \ J , there is an
integer k = k(c) such that a.a.s. A(G (n, p)) = k, where p ∼ c/n.

(iii) If p = o(1/n), then a.a.s. A(G (n, p)) ≤ 1.

Remark. (a) Note that Theorem 4 (i) is a simple corollary of Theorem 5 below. Indeed,
for most values of p = ω(1/n), we can do even better than the two-value concentration
result stated above and a.a.s. determine the exact value of the arboricity (cf. the remark
that follows Theorem 5).
(b) It follows from Theorem 4 that, for all p = ω(1/n), the arboricity of G (n, p) is asymptotic
to pn/2, whereas this property fails for p = O(1/n).
(c) There is no one-point concentration in Theorem 4 (ii) for p ∼ c/n where c < 1. In
fact, in this scenario, it is easy to see that a.a.s. A(G (n, p)) = 1 + I, where I denotes the
indicator random variable of the event that G (n, p) contains a cycle. It is well-known that
limn→∞Pr(I = 1) = α(c) for some constant 0 < α(c) < 1 (with limc→0 α(c) = 0 and
limc→1 α(c) = 1). Therefore, if 0 < c < 1, A(G (n, p)) has positive measure on both 1 and 2
as n→∞.

Theorem 5. Let β = 2/ log(e/2) ≈ 6.51778. The following holds in the random graph
process G0, G1, . . . , G(n2)

.

(i) Let m0 be any function of n such that m0/n→∞ and let ε > 0 be any constant. Then,
a.a.s. simultaneously for all m ≥ m0 such that δ(Gm) ≤ m/(n− 1),⌈

m+ φ1

n− 1

⌉
≤ A(Gm) ≤

⌈
m+ φ2

n− 1

⌉
, (1)

where φ1 = n/ exp
(

(1+ε)
β

2m
n

)
= o(n) and φ2 = n/ exp

(
(1−ε)
β

2m
n

)
= o(n). In particular,

a.a.s. A(Gm) ∈ {d m
n−1e, d

m
n−1e+ 1} for all m in that range.

(ii) Moreover, a.a.s. simultaneously for every m such that δ(Gm) ≥ m/(n− 1) we have

A(Gm) =
⌈
m/(n− 1)

⌉
.

Remark. Given positive integers a and b, let R(a, b) = a − bba/bc denote the remainder
of a divided by b. Then (1) in Theorem 5(i) implies A(Gm) = d m

n−1e for those m such that
0 < R(m,n−1) ≤ n−1−φ2 (which is the case for most values of m), and A(Gm) = d m

n−1e+1
if R(m,n − 1) = 0 or R(m,n − 1) > n − 1 − φ1. For those few remaining values of m such
that n− 1− φ2 < R(m,n− 1) ≤ n− 1− φ1 we can only say A(Gm) ∈ {d m

n−1e, d
m
n−1e+ 1}.

Corollary 6. Let mA=i denote the minimum m such that A(Gm) becomes i in the random
graph process G0, G1, . . . , G(n2)

. Let i0 be any function of n such that i0 → ∞ and ε > 0 be

a constant. Then a.a.s.
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(i) for every i0 ≤ i ≤ (1− ε)β log n/2,

(i− 1)(n− 1)− φ2 < mA=i < (i− 1)(n− 1)− φ1,

where φ1 = n/ exp
(

2(1+ε)
β

i
)

= o(n) and φ2 = n/ exp
(

2(1−ε)
β

i
)

= o(n); and

(ii) for every (1 + ε)β log n/2 ≤ i ≤ n/2,

mA=i = (i− 1)(n− 1) + 1.

Remark. Indeed, as shown in the proof in Section 8, mA=i > (i− 1)(n− 1)− φ2 holds for
all i0 ≤ i ≤ (1 + ε)β log n/2.

Recall that a graph G is k-orientable if all edges of G can be oriented so that the maximum
indegree of the oriented graph is at most k. It was shown by Hakimi [24] thatG is k-orientable
if and only if it contains no subgraph with average degree more than 2k. Trivially, this implies
that no graph on n vertices with more than kn edges can be k-oriented. Moreover, by the
previous corollary together with a result by Nash-Williams (see Theorem 9), we obtain
the following theorem, which characterises the k-orientability of G (n,m) (i.e. the uniform
random graph on n vertices and m edges) for k →∞.

Theorem 7. Let β = 2/ log(e/2) ≈ 6.51778. Let f be any function of n that goes to infinity
as n→∞. Then for every integer k ≥ f and any ε > 0, as n→∞,

Pr(G (n,m) is k-orientable)→

{
1 if m ≤ k(n− 1)− φ
0 if m ≥ kn+ 1,

where φ = 0 if k ≥ 1+ε
2
β log n and φ = n/ exp

(
2(1−ε)
β

k
)

= o(n) if f ≤ k < 1+ε
2
β log n.

Remark. In particular, Theorem 7 implies that the property of being k-orientable has a
sharp threshold in G (n,m) at m ∼ kn, since we are assuming k →∞. By a closer inspection
of Corollary 6, we may obtain more accurate bounds on the critical m for k-orientability by
distinguishing each of the two cases f ≤ k ≤ 1−ε

2
β log n and k ≥ 1+ε

2
β log n. Moreover, we

recall that the k-orientability of G (n,m) can be interpreted in terms of a load-balancing
problem in a setting where m = ω(n) jobs (edges) are assigned to n machines (vertices), in
a way that each job is allocated to one machine, selected from two randomly given ones.
In this context, we want to minimise the maximum load (number of jobs) received by any
machine. Observe that Theorem 7 implies that there exists a load distribution such that
the maximum load is around m/n, and almost all machines receive a load very close to the
maximum load.

The paper is organised as follows. We first introduce some basic tools in Section 3,
including two classic theorems by Tutte and Nash-Williams that characterise the spanning
tree-packing number and the arboricity of a graph. There, we also prove two deterministic
results (Propositions 10 and 11) that are central in our argument. They give a list of
conditions under which the STP number equals the minimum between δ and bm/(n − 1)c.
In Section 4, we prove several lemmas about properties of G (n, p). These lemmas will be
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used in conjunction with the two aforementioned deterministic propositions to derive most
of the main results in the paper. Finally, we prove Theorem 1 in Section 5, Theorem 2 in
Section 6, Theorem 3 in Section 7, Theorem 5 in Section 8 and Theorem 4 in Section 9. In
Section 10 we discuss the extension of our results to random uniform hypergraphs.

3 Deterministic tools

In this section, we introduce some basic tools that lie in the core of our argument. Given a
graph G, let V (G) denote the vertex set of G and let E(G) denote the edge set of G. Recall
that m(G) is the number of edges, and δ(G) is the minimum degree of G. If |V (G)| ≥ 2,
define d(G) := 2m(G)/(|V (G)| − 1). Note that d(G) differs from the average degree of G by
a small factor of |V (G)|/(|V (G)| − 1). Also, let t(G) = min{δ(G), d(G)/2}.

We first restate two well-known results by Tutte and Nash-Williams that provide a useful
characterisation of the STP number and the arboricity of a graph G. For any partition P of
the vertex set V (G) of a graph G, let m(P) denote the number of edges in G with ends in
distinct parts of P .

Theorem 8 (Tutte [42] and Nash-Williams [34]). Let G be a graph and t a positive integer.
Then G contains t edge-disjoint spanning trees if and only if, for every partition P of the
vertex set of G such that every class is non-empty,

m(P) ≥ t(|P| − 1). (2)

For any S ⊆ V (G), let E[S] denote the set of edges of G with both ends in S.

Theorem 9 (Nash-Williams [35]). Let G be a graph and t a positive integer. Then the edge
set of G can be covered by t forests if and only if, for every nonempty subset S of vertices

of G,
|E[S]| ≤ t(|S| − 1). (3)

The next two propositions play a central role in this paper. They make use of Theorem 8
to determine the STP number of any well-behaved graph satisfying certain conditions. For
ε > 0, we say that a vertex of G is ε-light if its degree is at most δ(G) + εd(G).

Proposition 10. Let G = Gn be a graph on vertex set [n]. Let δ := δ(G) and let d := d(G).
Suppose that d → ∞ as n → ∞ and that there exist constants ε, ζ, η > 0 such that the
following hold, for all sufficiently large n.

(a) The minimum degree δ is at most (ε/4)d; there is no pair of adjacent ε-light vertices;
and all vertices of G have at most one ε-light neighbour.

(b) No set of size s < ζn induces more than (ε/4)ds edges.

(c) For all disjoint S, S ′ ⊆ [n] with |S| ≥ |S ′| ≥ ζn, we have that |E(S, S ′)| ≥ ηdn.

Then eventually T (G) = δ.

9



Proposition 11. Let G = Gn be a graph on [n]. Let δ := δ(G) and d := d(G), and suppose
that d → ∞ as n → ∞. Let t = min{δ, d/2}. Suppose moreover that there exist constants
0 < ε, η, ζ ≤ 1 such that the following hold, for sufficiently large n.

(a’) Either we have that δ > (1+ε)d
2

; or there are no adjacent ε-light vertices and each vertex
of G is adjacent to at most one ε-light vertex.

(b’) For all S ⊆ V (G), with |S| ≥ ζn, we have that d(S) ≥ d(1− o(1)), where d(S) denotes
the sum of degrees of vertices in S divided by |S|.

(c’) For all disjoint S, S ′ ⊆ V (G) with |S| ≥ |S ′| ≥ ζn, we have that |E(S, S ′)| ≥
ηd|S||S ′|/n.

(d’) For all ∅ ( S ( V (G), we have that |E(S, S)| ≥ t.

(e’) No set of size s < ζn induces more than (ε/4)ts edges.

Then eventually T (G) = btc.

Propositions 10 and 11 will be used to determine the STP number and the arboricity
of G (n, p) (see the arguments leading to the proofs of Theorems 1, 3, 4 and 5). Basically,
according to the range of p, we will show that G (n, p) (or some modification of G (n, p))
satisfies the conditions in Proposition 10 or Proposition 11 with sufficiently high probabil-
ity. Proposition 10 is applied when the minimum degree is relatively small compared to
d, whereas otherwise Proposition 11 is used instead. Thus, we need a good estimation of
δ(G (n, p)); together with several graph-expansion-related properties, as required by condi-
tions (b), (c), (c’), (d’) and (e’); and also some properties about the ε-light vertices addressed
in conditions (a) and (a’). In the following section, we derive bounds on the probability that
these properties hold in G (n, p) for some relevant ranges of p.

Proof of Proposition 10. We will show that every partition of the vertices of G satisfies (2)
with t = δ, and thus G has δ edge-disjoint spanning trees by Theorem 8.

Let P be a partition of V (G). Parts of size one are denoted singletons, and singletons
consisting of one ε-light vertex are called ε-light singletons. We may assume that

every part with size at least 2 has one vertex that is not ε-light. (4)

This is because, given a part of size at least 2 and with only ε-light vertices, we can
refine the partition by turning each vertex in this part into a singleton, and this increases
the number of parts without increasing the number of edges with ends in distinct parts by
Condition (a).

Let K1 denote the set of ε-light singletons, let K2 denote the set of parts of size between
2 and ζn together with the singletons that are not ε-light, and let K3 denote the set of other
parts. For i = 1, 2, 3, let ki = |Ki|. Then, |P| = k1 + k2 + k3.

By Condition (a), no ε-light vertices are adjacent. Thus, the number of edges incident
with a vertex in K1 is at least δk1. Suppose K2 is non-empty and suppose S is a part in
K2, and let r be the number of vertices in S that are not ε-light. By the assumption in (4)
and the definition of K2, we must have 1 ≤ r ≤ ζn. The number of edges between these
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r vertices is at most (ε/4)dr by Condition (b). Since these vertices are not ε-light, each of
them has degree at least δ + εd. By Condition (a), each of these vertices is adjacent to at
most one ε-light vertex. Thus,

|E(S, S \ K1)| ≥ r(δ + εd− 1)− 2(ε/4)dr ≥ δ + (ε/4)d,

where the term −1 in the first inequality accounts for a possible ε-light neighbour of each
one of these r vertices and we use the fact that d → ∞. Thus, the number of edges in the
partition P is at least

m(P) ≥ δk1 +
δ + (ε/4)d

2
k2 ≥ δ(k1 + k2), (5)

as δ ≤ (ε/4)d by Condition (a). If k3 ≤ 1, this already shows that m(P) ≥ δ(|P| − 1).
Otherwise, we have 2 ≤ k3 ≤ 1/ζ, and the number of edges between any two parts of K3 is
at least ηdn by Condition (c). We can add these additional edges to (5) and obtain

m(P) ≥ δ(k1 + k2) + ηdn ≥ δ(k1 + k2) + (ε/4)dk3 ≥ δ|P|, (6)

since eventually ηn ≥ (ε/4)/ζ ≥ (ε/4)k3, and δ ≤ (ε/4)d.

Proof of Proposition 11. We will show that every partition of the vertices of G satisfies (2),
and thus G has btc edge-disjoint spanning trees by Theorem 8.

We say that a set S ⊆ V is large if |S| ≥ ζn. We say that a partition of V is simple if
each class either is large or a singleton (that is, it consists of a single vertex). Recall that
m(P) denotes the number of edges with ends in distinct parts of P .

Claim 1. If P is a simple partition, then m(P) ≥ t(|P| − 1).

Assume Claim 1 holds, and suppose for a contradiction that there is a partition P of V
such that m(P) < t(|P| − 1). By Claim 1, P is not a simple partition. Given a set S and
a vertex v ∈ S, let dS(v) denote the number of neighbours of v inside S. Since P is not
simple, we can find a non-large part S of P with at least 2 vertices. By Condition (e’) and
since ε ≤ 1, S must contain one vertex w with

dS(w) ≤ 2|E[S]|
|S|

≤ 2εt|S|
4|S|

≤ t/2. (7)

Moreover, condition (d’) implies that

m(P) ≥ (t/2)(|P| − 1). (8)

Let P ′ be obtained from P by turning w into a singleton. We have |P ′| = |P| + 1 and
m(P ′) = m(P) + dS(w). Combining this facts together with (7) and (8), we obtain

m(P ′)
|P ′| − 1

=
m(P) + dS(w)

|P|
≤ m(P) + t/2

|P|
≤
m(P) + m(P)

|P|−1

|P|
=

m(P)

|P| − 1
. (9)

11



Repeat this procedure of turning vertices into singletons until no parts of size between 2 and
ζn remain, and therefore obtain a simple partition P ′′. Since (9) holds in each iteration, we
have

m(P ′′)
|P ′′| − 1

≤ m(P)

|P| − 1
< t,

which contradicts Claim 1.
To complete the argument, we proceed to prove Claim 1. Let P be a simple partition. If

all parts of P are singletons, then we have m(P) = d
2
(n−1) = d

2
(|P|−1). Suppose otherwise

there is at least one large part. Since P is simple, each large part has at least ζn vertices
and so there are at most ` := 1/ζ = O(1) large parts. Let k be the number of singletons
in P . Note that k ≤ (1− ζ)n since any large part has at least ζn vertices.

Suppose first that ζn ≤ k ≤ (1 − ζ)n. Then the average degree of the singletons is at
least d(1 − o(1)) by Condition (b’). Since there is at least one large part, the number of
edges between the k singletons and this large part is at least ηζdk by Condition (c’). Hence,
m(P) is at least the number of edges incident with a singleton, which is at least

d(1− o(1))k + ηζdk

2
≥ (1 + ηζ/2)k

k + `− 1
(d/2)(k + `− 1).

This satisfies Equation (2) with d/2 ≥ t for large enough n, since k ≥ ζn and ` = O(1).

Suppose otherwise that 0 ≤ k ≤ ζn. By Condition (a’), we have that either δ > (1+ε)d
2

;
or there are no adjacent ε-light vertices and each vertex is adjacent to at most one ε-light
vertex. The number of edges between singletons is at most (ε/4)tk ≤ εtk by Condition (e’).

In the first case where δ > (1+ε)d
2

, the total number of edges incident to the singletons is at
least

(1 + ε)d

2
k − εtk ≥ (1 + ε)tk − εtk ≥ tk. (10)

Now we consider the second case. Recall that a vertex is ε-light if it has degree at most
δ + εd. Suppose that there are no adjacent ε-light vertices and each vertex is adjacent to at
most one ε-light vertex. Let K1 denote the set of singletons that are ε-light and K2 the set
of other singletons (singletons that are not ε-light). Let ki = |Ki| for i = 1, 2, so k = k1 + k2
(possibly k1, k2 = 0). Since there are no adjacent ε-light vertices, |E(K1, K1)| ≥ δk1. Since
no two ε-light vertices have a common neighbour, we have d[n]\K1(v) ≥ δ + εd− 1, for every

v ∈ K2. Moreover, Condition (e’) guarantees that there are at most εtk2 ≤ εdk2/2 edges
inside K2, and therefore |E(K2, K2 \K1)| ≥ (δ+ εd− 1)k2− εdk2/2. Thus, the total number
of edges incident with singletons is at least

δk1 + (δ + εd− 1)k2 − εdk2/2 ≥ δk ≥ tk, (11)

eventually as d = ω(1) by our assumption. Thus, we have proved that in both cases, the
number of edges incident with singletons is at least tk. If the number of large parts is exactly
1, then (2) holds as |P| = k + 1 and m(P) ≥ tk by (10) and (11). Otherwise, if there are
at least two large parts, the number of edges between any two of them is at least ηζ2dn by
Condition (c’). Thus, for large enough n,

m(P) ≥ tk + ηζ2dn ≥ t

(
k +

ηζ2dn

t

)
≥ t(k + `− 1),
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since t ≤ d/2 and ` = O(1).

4 Properties of G (n, p)

In this section, we always let G denote G (n, p), and let δ := δ(G (n, p)), m := m(G (n, p))
and d := d(G (n, p)) = 2m/(n − 1). Recall our earlier assumption that n ≥ 2. So d is well
defined. For any vertex v, let dv denote the degree of v in G.

4.1 Typical degrees

Our aim here is to show that m and d are a.a.s. concentrated around their expected values,
and that most of the vertices of G (n, p) have degree close to d. To do so, we first state a
version of the well-know Chernoff’s bounds (see e.g. Theorems 4.4 and 4.5 in [32])

Theorem 12 (Chernoff’s bounds). Let X1, . . . , Xn denote n independent Bernoulli variables.
Let X =

∑n
i=1Xi and let µ = EX. Then for any 0 < τ < 1,

Pr (X ≥ (1 + τ)µ) ≤ exp(−τ 2µ/3), Pr (X ≤ (1− τ)µ) ≤ exp(−τ 2µ/2).

Lemma 13. For any function τ(n) < 1, we have that the probability that |d − pn| ≤ τpn
and |m− p

(
n
2

)
| ≤ τp

(
n
2

)
is at least 1− 2 exp(−Aτ 2pn2) where A = 1/12.

Proof. By the definition of d, the events |d−pn| > τpn and |m−p
(
n
2

)
| > τp

(
n
2

)
are equivalent.

Then, since the number of edges in G (n, p) is distributed as Bin(
(
n
2

)
, p), we apply Chernoff’s

bound in Theorem 12 and obtain

Pr

(∣∣m− p(n
2

)∣∣ > τp

(
n

2

))
≤ 2 exp

(
−
τ 2p
(
n
2

)
3

)
.

Lemma 14. Let f ≥ 0 be any function of n such that f →∞. Then, there exists a constant
C > 0 such that for every f/n ≤ p ≤ 1 the following holds in G (n, p) with probability at least

1− e−C(pn)1/3. The number of vertices with degree not in [d− (pn)2/3, d+ (pn)2/3] is at most

n/eCf
1/3

.

Proof. We have that

Pr(|dv − d| > (pn)2/3) ≤ Pr
(
|d− pn| > (pn)2/3

2

)
+ Pr

(
|dv − pn| >

(pn)2/3

2

)
.

By Lemma 13 with τ = 1
2
· (pn)−1/3,

Pr
(
|d− pn| ≤ (pn)2/3

2

)
≤ 2 exp(−An · (pn)1/3),

where A is a positive constant. By Chernoff’s inequality in Theorem 12, for a positive
constant B,

Pr
(
|dv − pn| >

(pn)2/3

2

)
≤ 2 exp

(
− Bpn

(pn)2/3

)
= 2 exp

(
−B(pn)1/3

)
.
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Thus, there is a positive constant C such that,

Pr(|dv − d| > (pn)2/3) ≤ exp
(
− 2C(pn)1/3

)
.

Thus, by Markov’s inequality, the probability that the number of vertices with degree outside
[d− (pn)2/3, d+ (pn)2/3] is more than n exp(−Cf 1/3) is at most

n exp
(
− 2C(pn)1/3

)
n exp

(
− Cf 1/3

) ≤ exp
(
− C(pn)1/3

)
,

since pn ≥ f .

4.2 Maximum and minimum degree

In this section, we collect several results about the maximum and minimum degree of G (n, p)
relevant to our argument. First, we give an easy upper-bound on the maximum degree.

Lemma 15. Given any constant γ > 0, there exist positive constants C and K such that, if
p ≤ γ log n/(n− 1), then the maximum degree of G (n, p) is at most K log n with probability
at least 1− n−C.

Proof. Let ∆ denote the maximum degree in G and dv denote the degree of v in G for any
vertex v. By union bound and Chernoff’s bound in Theorem 12, for any K > γ,

Pr(∆ ≥ K log n) ≤ nPr(dv ≥ K log n) ≤ exp

(
−(K log n− p(n− 1))2

3p(n− 1)
+ log n

)
.

Since pn ≤ γ log n, it suffices to choose K large enough so that (K − γ)2/(3γ)− 1 > 0.

Our results about the minimum degree require the application of the first and the second
moment methods to the number of vertices of low degree. The following lemma gives a
lower-tail estimate for a Binomial random variable, and shall be used to bound the expected
number of these low-degree vertices; the next lemma after that one will give us a bound on
the variance.

Lemma 16. For every constant η > 0 there exist positive constants C1 and C2 such that the
following holds for any function 0 ≤ p ≤ 1/

√
n and every integer 0 < k ≤ (1 − η)np. Let

X ∼ Bin(n, p). Then,

Pr(X ≤ k) = C
e−pn√
k

(epn
k

)k
with C1 ≤ C ≤ C2.

Proof. It follows easily from Stirling’s approximation, that there exist two positive constants
A1 and A2 such that, for every 0 < k <

√
n,

A1√
k

(en
k

)k
≤
(
n

k

)
≤ A2√

k

(en
k

)k
.
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Moreover, there exist positive constants B1 and B2 such that, for every 0 ≤ p ≤ 1/
√
n and

every 0 < k <
√
n,

B1e
−pn ≤ (1− p)n−k ≤ B2e

−pn.

Therefore, there exist positive constants C ′1 and C ′2 not depending on p or k such that

Pr(X = k) =

(
n

k

)
pk(1− p)n−k = C ′

e−pn√
k

(epn
k

)k
with C ′1 ≤ C ′ ≤ C ′2,

and the lower bound follows immediately since Pr(X ≤ k) ≥ Pr(X = k). For the upper
bound, let fi = Pr(X = i) =

(
n
i

)
pi(1− p)n−i, and observe that, for every i ≤ (1− η)np,

fi−1
fi
≤ i

(n− i)p
≤ 1− η

2
,

since p ≤ 1/
√
n ≤ η

2−η eventually. Hence, there is a constant D > 0 only depending on η

such that Pr(X ≤ k) ≤ DPr(X = k).

Lemma 17. Let Y denote the number of vertices of degree at most k in G (n, p), where p < 1.
Then Var(Y ) ≤ (EY )2(p/(1− p) + 1/EY ).

Proof. Recall that dv has distribution Bin(n− 1, p). Let q≤(r, t) denote the probability that
a random variable with distribution Bin(r, p) has value at most t and let q=(r, t) denote the
probability that it has value exactly t. Then

E(Y 2) =
∑
u,v∈V

Pr(dv ≤ k and du ≤ k)

= EY + n(n− 1)
(
p · q≤(n− 2, k − 1)2 + (1− p) · q≤(n− 2, k)2

)
.

This holds because for any distinct vertices u, v ∈ V , the number of neighbours of u in
V \{v} and the number of neighbours of v in V \{u} are independent random variables with
distribution Bin(n− 2, p). Clearly, q≤(r, t) = q≤(r, t− 1) + q=(r, t). And so

p · q≤(n− 2, k − 1)2 + (1− p) · q≤(n− 2, k)2

= q≤(n− 2, k − 1)2 + 2(1− p) · q=(n− 2, k)q≤(n− 2, k − 1) + (1− p) · q=(n− 2, k)2. (12)

Moreover,

q≤(n− 1, k)2 =
(
q≤(n− 2, k − 1) + (1− p) · q=(n− 2, k)

)2
.

Thus,

E(Y 2) = EY + n(n− 1)
(
q≤(n− 1, k)2 + (1− p)q=(n− 2, k)2(1− (1− p))

)
≤ EY + n2q≤(n− 1, k)2

(
1 +

p

1− p

)
= E(Y )2

(
1 +

p

1− p
+

1

E(Y )

)
.

The following lemma bounds the probability that δ(G (n, p)) deviates significantly from
its expected value in the range 0.9 log n/(n − 1) ≤ p ≤ γ log n/(n − 1), where γ ≥ 0.9 is a
constant. We will apply this lemma when we require more precise probability bounds than
those that would follow from the Chernoff’s inequalities in Theorem 12.
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Lemma 18. Let γ ≥ 0.9 and 0 < η < 1 be constants. Then there exists a constant C > 0
such that, for any functions p and α of n satisfying 0 < α ≤ 1 − η and 0.9 log n/(n − 1) ≤
p ≤ γ log n/(n− 1), the following holds:

(i) Pr
(
δ ≤ αp(n− 1)

)
≤ C exp

(
log n− p(n− 1)

(
1− α log

( e
α

))
− 1

2
log log n

)
and

(ii) Pr
(
δ > αp(n−1)

)
≤ C

(
log n

n
+ exp

(
p(n− 1)

(
1− α log

( e
α

))
− log n+

1

2
log log n

))
.

Proof. Given an arbitrary vertex v, let dv ∼ Bin(n−1, p) be the degree of v. By Lemma 16,
there exists a function C ′ ∈ [C1, C2], where C1, C2 are positive constants that depend only
on η and γ such that

Pr(dv ≤ αp(n− 1)) = C ′ exp

(
− p(n− 1)

(
1− α log

( e
α

))
− 1

2
log log n

)
. (13)

Set C to be a constant larger than C2 +2γ+1/C1 ≥ C ′+2γ+1/C ′. From (13), the expected
number of vertices with degree at most αp(n− 1) is

C ′ exp

(
log n− p(n− 1)

(
1− α log

( e
α

))
− 1

2
log log n

)
,

which implies (i), since C ≥ C ′. Finally, the proof of (ii) follows from Lemma 17 and
Chebyshev’s inequality, since p/(1− p) ≤ 2γ log n/n and C ≥ 2γ + 1/C ′.

It is convenient to state an easy consequence of Lemma 18 as a separate result. We
will use the following lemma when p is very close to the threshold function β log n/(n − 1)
described in Theorem 2, in order to have a fairly precise bound of the probability that
δ(G (n, p)) deviates slightly from pn/2. It is normally applied by choosing ε so that |ε| log n
is negligible compared to the other terms in (14) and (15).

Lemma 19. Let γ > β = 2/ log(e/2) and 0 < η < 1/2 be constants. Then there exist
positive constants C and D such that the following holds. For any functions p and ε of n
satisfying |ε| ≤ 1− 2η and 0.9 log n/(n− 1) ≤ p ≤ γ log n/(n− 1), we have

Pr
(
δ ≤ (1 + ε)

2
p(n− 1)

)
≤ C exp

(
− h

β
− 1

2
log log n+D|ε| log n

)
, and (14)

Pr
(
δ >

(1 + ε)

2
p(n− 1)

)
≤ C

(
log n

n
+ exp

(
h

β
+

1

2
log log n+D|ε| log n

))
, (15)

where h = h(n) is defined by

p =
β log n+ h

n− 1
.

Proof. By putting α = (1 + ε)/2, we have that η ≤ α ≤ 1 − η, and there is some constant
D′ > 0 depending only on η such that |α log(e/α) − 1 + 1/β| ≤ D′|ε|. The result follows
immediately from Lemma 18 and setting D = γD′.

16



At this point, the reader may suspect that the relevant range of p for the study of
the evolution of δ(G (n, p)) corresponds to p = Θ(log n/n). Indeed, a careful application
of Lemma 18 yields the following: if p ∼ c log n/n for some constant c > 1, then a.a.s.
d ∼ c log n and δ ∼ g(c)d, where g : [1,∞) → (0, 1) is a strictly increasing continuous
function with limc→1 g(c) = 0 and limc→∞ g(c) = 1. We do not prove the above claim, as it
is not needed in our argument, but rather collect several related statements together in the
following lemma.

Lemma 20.

(i) For any p ≤ 0.9 log n/(n− 1), a.a.s. δ(G (n, p)) = 0.

(ii) For any constant ε > 0, there exist constants γ > 1 and C > 0 such that, for every
0.9 logn
n−1 ≤ p ≤ γ logn

n−1 , we have that δ(G (n, p)) ≤ εd(G (n, p)) with probability at least

1− n−C.

(iii) Let γ > 1 be a constant. There exist positive constants ε and C such that, for p ≥
γ log n/(n− 1), we have that δ > εp(n− 1) with probability at least 1− n−C.

(iv) For every constants 0 < θ < 1 and C > 0, there exists a constant γ > 0, such that for
all p ≥ γ log n/(n− 1), we have Pr(δ(G (n, p)) ≤ θp(n− 1)) ≤ n−C.

Proof. Part (i) is a well-known fact (see e.g. [4]). We first prove part (iv). By Theorem 12,

Pr
(
δ(G (n, p)) ≤ θp(n− 1)

)
≤ n exp

(
−(1− θ)2p(n− 1)/2

)
≤ n exp

(
−(1− θ)2(γ/2) log n

)
.

Thus, the statement holds by choosing γ sufficiently large so that (1− θ)2γ/2− 1 > C.
Next, we prove part (iii). From part (iv), there is a ρ > 1 such that, for any p ≥

ρ log n/(n−1), δ(G (n, p)) > (1/2)p(n−1) with probability at least 1−1/n. Thus, for γ ≥ ρ,
statement (iii) follows immediately by choosing any ε ≤ 1/2 and any C ≤ 1. So suppose
otherwise that 1 < γ < ρ. By Lemma 18, there is a positive constant C ′ so that, for every p
in the considered range,

Pr(δ(G (n, p)) ≤ εp(n− 1)) ≤ C ′ exp

(
log n− γ log n

(
1− ε log

(e
ε

)))
.

Since γ > 1, we can choose 0 < ε ≤ 1/2 small enough so that γ(1 − ε log( e
ε
)) > 1. Then

there is a constant C ′′ > 0 such that the above probability is at most n−C
′′
. The statement

follows by choosing C = min{1, C ′′}.
Finally, we prove part (ii). We assume without loss of generality that ε < 1. We have

that

Pr
(
δ(G (n, p)) > εd(G (n, p))

)
≤ Pr

(
d(G (n, p)) < 0.8 log n

)
+ Pr

(
δ(G (n, p)) > 0.8ε log n

)
.

(16)
By Lemma 13, there is a positive constant B such that, for any p ≥ 0.9 log n/(n− 1),

Pr
(
d(G (n, p)) < 0.8 log n

)
≤ Pr

(
d(G (n, p)) < (8/9)pn

)
≤ exp(−Bn log n). (17)
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Let 1 < γ < 8/7 be a sufficiently small constant which we specify later, and put α = 0.8/γ.
In particular, 0.7 < α < 0.8. By Lemma 18, there is a constant D > 0 such that, for every
p in the range 0.9 log n/(n− 1) ≤ p ≤ γ log n/(n− 1), we have

Pr
(
δ(G (n, p)) > 0.8ε log n

)
≤ Pr

(
δ(G (n, p)) > εαp(n− 1)

)
≤ D

(
log n

n
+ exp

(
γ log n

(
1− εα log

( e
εα

))
− log n+

1

2
log log n

))
,

where we also used that 1 − εα log( e
εα

) > 0, as εα < 0.8. Moreover, choosing γ > 1 small
enough ensures that

B := γ

(
1− εα log

( e
εα

))
< γ

(
1− 0.7ε log

( e

0.7ε

))
< 1,

and the above probability is at most

D

(
log n/n+ exp

(
− (1−B) log n+

1

2
log log n

))
. (18)

Combining (16), (17) and (18) yields statement (ii), for C sufficiently small.

Finally, we include a result that compares the minimum degree of G (n, p) and G (n, p̂),
when p and p̂ are close to one another.

Lemma 21. For any constants 1 < γ1 < γ2 and ε > 0, there exist positive constants η and
C such that, for any functions p and p̂ satisfying γ1 log n/(n− 1) ≤ p ≤ p̂ ≤ γ2 log n/(n− 1)
and p̂/p− 1 ≤ η,

δ(G (n, p̂)

δ(G (n, p))
− 1 ≤ ε

with probability at least 1− n−C.

Proof. Assume without loss of generality that 0 < ε < 1. Choose constants γ0 and γ3 such
that 1 < γ0 < γ1 and γ2 < γ3. The function f(y) = 1 − y log(e/y) is a bijection from [0, 1]
to [0, 1] (defining f(0) = 1), and is strictly decreasing in that domain. Therefore, we can
define the constants yi = f−1(1/γi) for i = 0, 1, 2, 3, which satisfy 0 < y0 < y1 < y2 < y3 < 1.
Moreover, there exists a constant D > 0 such that f ′ ≤ −D for all y in [y0, y3], since this
interval is a compact set and f ′ < 0 is continuous there.

Pick two positive constants ζ and ξ sufficiently small so that the following conditions are
satisfied: y2 + ζ ≤ y3; ζ ≤ εy0/3; ξ ≤ γ1Dζ/4; and γ1/(1 + ξ) ≥ γ0 (note that the choice
of ξ depends on ζ). With all these constants in mind, we choose η > 0 in the statement
sufficiently small so that η ≤ γ1Dζ/4 and η ≤ ε/3.

Put x = p(n − 1)/ log n and x̂ = p̂(n − 1)/ log n. In general, x and x̂ are functions of n
with γ1 ≤ x ≤ x̂ ≤ γ2, and moreover, from the assumption in the statement, x̂ ≤ (1 + η)x.
Define α = f−1((1 + ξ)/x) and α̂ = α+ ζ, also functions of n. From the previous conditions
γ1 ≤ x ≤ γ2 and 1+ξ ≤ γ1/γ0, we deduce that y0 ≤ α ≤ y2. From this and since y2 +ζ ≤ y3,
we get α̂ ≤ y3. So in particular α, α̂ ∈ [y0, y3]. We have

x(1− α log(e/α)) = xf(α) = 1 + ξ. (19)
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Moreover, using the bound on f ′ in [y0, y3] and some of the earlier constraints on x, x̂, ξ and
η,

x̂(1− α̂ log(e/α̂)) ≤ (1 + η)x(f(α)−Dζ) ≤ (1 + η)(1 + ξ − γ1Dζ) ≤ 1− γ1Dζ/2. (20)

Using Lemma 18 together with (19) and (20), we conclude that

δ(G (n, p)) > αx log n and δ(G (n, p̂)) ≤ α̂x̂ log n

with probability at least 1−n−C , for any positive constant C satisfying C < min{1, ξ, γ1Dζ/2}.
This last event implies that

δ(G (n, p̂)) ≤ (1 + ζ/α)(1 + η)αx log n ≤ (1 + ε/3)2δ(G (n, p)) ≤ (1 + ε)δ(G (n, p)),

since ζ ≤ εy0/3 ≤ εα/3, η ≤ ε/3 and ε < 1. This completes the proof of the Lemma.

4.3 Light vertices

Recall that an ε-light vertex was defined to be a vertex of degree at most δ + εd. The
following result shows that a.a.s. all ε-light vertices of G (n, p) are at least three steps apart
for a certain range of p.

Lemma 22. Suppose 0.9 log n/(n − 1) ≤ p ≤ γ log n/(n − 1) for some constant γ ≥ 0.9.
Then there exist constants ε > 0 and C > 0 such that the following holds in G (n, p) with
probability at least 1 − n−C. There is no pair of adjacent ε-light vertices and no two ε-light
vertices have a common neighbour.

Proof. Let x = p(n− 1)/ log n. For each x ∈ [0.9, γ], define α = α(x) to be the only solution
in (0, 1) of

x(1− α log(e/α)) = 0.8. (21)

It is straightforward to verify that α ∈ (0, 1) is well defined and strictly increasing with
respect to x ∈ [0.9, γ]. Consider the constant ε̂ = 0.1/(γ − 0.8), and define α̂ = (1 + ε̂)α.
Recall that both α and α̂ are functions of x = p(n− 1)/ log n. Then, using (21) and the fact
that ε̂ ≤ 0.1/(x− 0.8), we obtain

x(1− α̂ log(e/α̂)) > x(1− α̂ log(e/α)) = x− (1 + ε̂)(x− 0.8) ≥ 0.7. (22)

From (21) and by Lemma 18 (ii), we can bound

Pr(δ > αp(n− 1)) ≤ Dn−0.19, (23)

for a constant D > 0 not depending on p. Assume for the rest of the argument that D is
sufficiently large. Let S be the set of vertices of degree at most α̂p(n − 1). By (13) in the
proof of Lemma 18 and (22), the probability that a vertex v belongs to S is

Pr(v ∈ S) = Pr(dv ≤ α̂p(n− 1)) ≤ Dn−0.7. (24)
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We can upper-bound the probability that a pair of vertices u and v are adjacent and belong
to S, by

pPr(du ≤ α̂p(n− 1))Pr(dv ≤ α̂p(n− 1)) = p
(
Pr(v ∈ S)

)2
.

Multiplying this by the number of possible pairs and using (24), we get that the probability
that S contains some adjacent pair of vertices is at most(

n

2

)
p
(
Pr(v ∈ S)

)2 ≤ Dγn−0.4 log n. (25)

By a similar argument, the probability that S contains a pair of vertices with a common
neighbour is at most (

n

2

)
(n− 2)p2

(
Pr(v ∈ S)

)2 ≤ Dγ2n−0.4 log2 n. (26)

Finally, we define ε = α(0.9)ε̂/2. Recall that α is increasing in [0.9, γ], and then ε ≤ α̂ε̂/2.
It follows from Lemma 13 that d = d(G (n, p)) is at most 2p(n− 1) with probability at least
1−D/n, assuming that D is large enough. If this event and the one in (23) hold together,
then

δ + εd ≤ (α + 2ε)p(n− 1) ≤ α̂p(n− 1),

and therefore all ε-light vertices are contained in S. Putting everything together, the state-
ment holds with probability at least 1− n−C , for some small enough constant C > 0.

We include an extension of the previous lemma in terms of two random graphs G1 ∼
G (n, p1) and G2 ∼ G (n, p2), with 0 ≤ p1 ≤ p2 < 1, which are coupled together so that
G1 ⊆ G2. This standard coupling can be achieved in the following way. Let G1 distributed
as G (n, p1) and let G2 the supergraph of G1 obtained by adding each edge not in G1 indepen-
dently with probability (p2−p1)/(1−p1). Then G1 ⊆ G2 and G2 has the same distribution as
G (n, p2) (for more details, we refer readers to Section 1.1 in [27]). The following lemma will
be used in Section 7, and can be proved in the exact same way as Lemma 22, but replacing
p by p′ in (25) and (26).

Lemma 23. Suppose 0.9 log n/(n−1) ≤ p ≤ p′ ≤ γ log n/(n−1) for some constant γ ≥ 0.9.
Let G1 ⊆ G2 where G1 ∼ G (n, p) and G2 ∼ G (n, p′). Then there exist constants ε > 0 and
C > 0 such that the following holds in G (n, p) and G (n, p′) with probability at least 1−n−C.
Let S be the set of ε-light vertices in G1. Then in G2, there is no edge induced by S, and no
two vertices in S adjacent to a common vertex.

4.4 Graph expansion

For any sets S, S ′ ⊆ [n], let E(S, S ′) be the set of edges in G with one end in S and the other
in S ′.

Lemma 24. Let f ≥ 0 be any function of n such that f → ∞, and ζ > 0 any fixed
constant. Then, there exists a constant C > 0 such that for every f/n ≤ p ≤ 1 the following
holds in G (n, p) with probability at least 1− e−Cpn2

. For every disjoint sets S, S ′ ⊆ [n] with
|S|, |S ′| ≥ ζn we have |E(S, S ′)| ≥ (d/4)|S||S ′|/n.
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Proof. The variable |E(S, S ′)| has distribution Bin(|S||S ′|, p). By Lemma 13 with τ = 1/4,
we have that

Pr
(
d ≥ 5

4
pn
)
≤ 2 exp(−Apn2)

where A = 1/12 and n ≥ 2. By Chernoff’s bound in Theorem 12, for a positive constant B,

Pr
(
Bin

(
|S||S ′|, p

)
<

5p

16
|S||S ′|

)
≤ exp (−Bp|S||S ′|) .

Hence, the probability that there exist such S and S ′ is at most

2 exp
(
− Apn2

)
+
∑

s,s′>ζn

(
n

s

)(
n

s′

)
exp (−Bpss′) ≤ exp

(
− Apn2

)
+ n2 · 2n · 2n exp

(
−Bζ2pn2

)
≤ 2 exp

(
− Apn2

)
+ exp

(
B′′n−Bζ2pn2

)
.

for a positive constant B′′ and we are done since pn ≥ f →∞ as n→∞.

Lemma 25. Let f ≥ 0 be any function of n such that f → ∞, and let α > 0 be any fixed
constant. Then, there exist constants ζ > 0 and C > 0 such that for every f/n ≤ p ≤ 1 the
following holds in G (n, p) with probability at least 1−Ce−(pn)2. For all s ≤ ζn and every set
S of size s, we have that |E[S]| ≤ αpns.

Proof. The result is trivial for any set of size s ≤ 2αpn since |E[S]| ≤ s2/2 ≤ s(2αpn)/2 =
αpns. Let ζ > 0 be small enough so that eζ

2α
< e−1/α

2
. The expected number of sets of size

2αpn ≤ s ≤ ζn containing at least αpns edges is at most(
n

s

)( (
s
2

)
dαpnse

)
pdαpnse ≤

(
en

s

( es

2αn

)dαpnse)s
=

(
e2

2α

( es

2αn

)dαpnse−1)s
≤
(
A

(
eζ

2α

)αpn)s
<
(
Ae−pn/α

)s
,

for some constant A > 0 depending only on f and ζ (we used the fact that the exponent
dαpne − 1 ≥ αf − 1, which eventually becomes positive as f →∞).

Summing the expectation above over all s ≥ 2αpn, we get∑
s≥2αpn

(
Ae−pn/α

)s ≤ (Ae−pn/α)2αpn 1

1− Ae−f/α
≤ Ce−(pn)

2

,

for some constant C > 0 only depending on f and ζ.

For any S ⊆ [n], let S denote [n] \ S.

Lemma 26. Let γ > 1 be a fixed constant. There exists a constant C > 0 such that for any
p = p(n) ≥ γ log n/(n − 1), the following holds in G (n, p) with probability at least 1 − n−C.
For every S ( [n] with 2 ≤ |S| ≤ n− 2, |E(S, S)| ≥ 1.5δ.
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Proof. Without loss of generality, we may assume that |S| ≤ |S|. Since p ≥ γ log n/(n− 1)
for some γ > 1, by Lemma 20 (iii), there exist constants ε > 0 and C1 > 0 such that with
probability at least 1− n−C1 , δ = δ(G (n, p)) ≥ εpn. Let α = ε/8. Then by Lemma 25, there
exist constants ζ > 0 and C2 > 0 such that with probability at least 1− n−C2 , for all sets S
with size at most ζn, |E(S, S)| ≤ αpn|S|. Then, with probability at least 1−n−C1−n−C2 , for
all these S, |E(S, S)| ≥ δ|S| − 2αpn|S| ≥ (3/4)δ|S| ≥ 1.5δ, as |S| ≥ 2. Now by Lemmas 24
and 13, there exists another constant C3 > 0 such that with probability at least 1−n−C3 , for
all sets S with size at least ζn, |E(S, S)| ≥ (d/4)ζ2n, where d = d(G (n, p)) ∼ np. Clearly,
(d/4)ζ2n ≥ 1.5δ with probability at least 1− n−C4 for some C4 > 0. The lemma follows by
choosing C < min{Ci : 1 ≤ i ≤ 4}.

5 Proof of Theorem 1

We proceed to prove Theorem 1, as a consequence of Propositions 10 and 11. For the rest of
the argument, let δ := δ(G (n, p)) and let d := d(G (n, p)). We split the argument into cases
depending on the range of p.

First observe that by Lemma 20 (i) we can assume that p ≥ 0.9 log n/(n − 1), since for
p ≤ 0.9 log n/(n − 1) the random graph G (n, p) is a.a.s. disconnected and has minimum
degree zero, so the statement of Theorem 1 holds trivially.

Let γ2 be a large enough constant so that for p ≥ γ2 log n/(n − 1) we have δ > (3/4)d
a.a.s. (see Lemma 20 (iv) and Lemma 13). Let ε < 1/2 be the constant given by Lemma 22
with γ = γ2. Let γ1 ∈ (1, γ2) be the constant given by Lemma 20 (ii) with ε/4.

For 0.9 log n/(n − 1) ≤ p ≤ γ1 log n/(n − 1), we only need to show that G (n, p) a.a.s.
satisfies the hypothesis of Proposition 10. First, we note from Lemma 13 that d ∼ pn→∞.
Condition (a) holds by our choice of γ1. Condition (b) follows from Lemma 25 with any
α < ε/4, since d ∼ pn. Fix ζ as given by that lemma. Condition (c) with η = ζ2/4 is a
consequence of Lemma 24.

Finally, we show that G (n, p) a.a.s. satisfies the conditions in Proposition 11 for the range
p ≥ γ1 log n/(n− 1). First note that δ = Ω(d) by Lemma 20 (iii). Condition (a’) is satisfied

for p ≥ γ2 log n/(n − 1), since a.a.s. δ > (1+ε)d
2

(by our choice of γ2 and since ε < 1/2); and
it is also satisfied for γ1 log n/(n − 1) ≤ p ≤ γ2 log n/(n − 1), since a.a.s. no ε-light vertices
are adjacent nor have a common neighbours (by our choice of ε). For condition (e’), note
that εt/d is bounded away from 0 since δ = Ω(d). Therefore, the condition follows from
Lemma 25 with α = εt/(8d) (also using that a.a.s. d ≥ pn/2), and this determines our choice
of ζ. Condition (b’) holds a.a.s. by Lemma 14. Condition (c’) holds a.a.s. by Lemma 24.
Condition (d’) holds a.a.s. by Lemma 26.

6 Proof of Theorem 2

The number of edges in G ∼ G (n, p) is a binomial random variable distributed as Bin(
(
n
2

)
, p).

If p < 0.9 log n/n, then by Lemma 20 (i), a.a.s. δ(G) = 0 and thus a.a.s. δ(G) ≤ d(G)/2.
Assume p ≥ 0.9 log n/n. By Lemma 13, a.a.s. |d/2 − pn/2| ≤ ωn

√
p, where d = d(G). By

Lemma 20 (iv), there is a constant γ > 0, such that for all p ≥ γ log n/n, a.a.s. δ(G) ≥
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(3/4)pn. Hence, for p in this range, a.a.s. δ(G) > d/2. Now we only consider 0.9 log n/n ≤
p ≤ γ log n/n.

Let ωn be a positive-valued function of n that goes to infinity arbitrarily slowly as n→∞,
and let ε = ωn/

√
pn. Define f = f(n) by p = β logn+f

n−1 . To prove statement (ii), we assume
f ≥ −β log log n/2 + ωn. By Lemma 19 (with h = f), we have that

Pr
(
δ ≤ 1

2
(1 + ε)pn

)
= O

(
exp

(
− f

β
− 1

2
log log n+O(ε log n)

))
= o(1), (27)

as −f/β − log log n/2 ≤ −wn, wheras ε log n = O(ωn
√
p) = o(1). Moreover, by Lemma 13,

Pr(d/2 ≥ (1 + ε)pn/2) = o(1). Thus, a.a.s. δ > d/2 and so T (G) = bd/2c by Theorem 1.
This completes the proof of statement (ii). On the other hand, if f ≤ −β log log n/2 − ωn,
then f/β + log log n/2 ≤ −ωn, and thus by Lemma 19 (with h = f , and ε replaced by −ε),

Pr
(
δ >

1

2
(1− ε)pn

)
= O

(
log n

n
+ exp

(
f

β
+

1

2
log log n+O(ε log n)

))
= o(1). (28)

Again by Lemma 13, Pr(d/2 ≤ (1− ε)pn/2) = o(1). Thus, a.a.s. δ < d/2 and thus T (G) =
δ(G) by Theorem 1, which completes the proof of statement (i).

7 Proof of Theorem 3

A standard tool to investigate the random graph process G0, . . . , Gm, . . . , G(n2)
is the re-

lated continuous random graph process (Gp)p∈[0,1] defined as follows. For each edge e of
the complete graph with vertex set [n], we associate a random variable Pe uniformly dis-
tributed in [0, 1] and independent from all others. Then, for any p ∈ [0, 1], we define Gp
to be the graph with vertex set [n] and precisely those edges e such that p ≥ Pe. Note
that for each p, Gp is distributed as G (n, p). This provides us with a useful way of cou-
pling together G (n, p) for several values of p, since p ≤ p′ implies Gp ⊆ Gp′ . Moreover,
let p(m) = min{p ∈ [0, 1] : Gp has at least m edges}. Then, Gp(0), . . . ,Gp(m), . . . ,Gp((n2))

is

distributed as G0, . . . , Gm, . . . , G(n2)
, since all Pe are different with probability 1. For more

details on the connection between (Gp)p∈[0,1] and (Gm)0≤m≤(n2)
and further properties, we

refer the reader to [27].
In this article, we prove several statements that hold a.a.s. simultaneously for all m in

the random graph process (Gm)0≤m≤(n2)
. To do so, it is often convenient to use small bits

of the continuous random graph process as follows. Given p0 and p1 as functions of n such
that 0 ≤ p0 ≤ p1 ≤ 1, we consider (Gp)p0≤p≤p1 . Let m0 = m(Gp0) and m1 = m(Gp1). (Note
that m0 and m1 are random variables with m0 ≤ m1, since Gp0 ⊂ Gp1 .) We colour all edges
of Gp0 = Gm0 red and the remaining m1−m0 edges in Gp1 \Gp0 blue. Then we can interpret
Gm0 , Gm0+1, . . . , Gm1 as a random graph process in which we sequentially add blue edges
to Gm0 , so that each Gm has the m0 red edges of Gm0 together with the first m −m0 blue
edges we add in the process. This interpretation will be used many times throughout the
argument.
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We first prove the following result, which is stronger than part (ii) of Theorem 3, and is
also used in the argument for part (i).

Theorem 27. Consider the random graph process (Gp)0≤p≤1. We have that a.a.s.

(i) for all p ≤ β(logn−log logn/2)−ω(1)
n−1 , we have δ(Gp) ≤ d(Gp)/2; and

(ii) for all p ≥ β(logn−log logn/2)+ω(1)
n−1 , we have δ(Gp) > d(Gp)/2.

Moreover, for every constant 0 < θ < 1, there is a constant ρ > 0 such that a.a.s.

(iii) for all ρ log n/(n− 1) ≤ p ≤ 1, we have δ(Gp) > θd(Gp).

Proof. First, we prove statement (iii). We will show that for every 0 < θ < 1, there exists
ρ > 0 such that a.a.s.

δ(Gm) > θd(Gm), for all m ≥ m0 = (ρ/4)n log n. (29)

Then, let p0 = ρ log n/(n−1). By Chernoff’s bound in Theorem 12, a.a.s. m(G (n, p0)) > m0,
i.e. a.a.s. p(m0) < p0. It follows then that a.a.s. δ(Gp) > θd(Gp) for all p ≥ p0. Now we
prove (29). For each m, let p̄ = m/

(
n
2

)
. Then

Pr
(
δ(Gm) ≤ θ · 2m/(n− 1)

)
= Pr

(
δ(G (n, p̄)) ≤ θp̄n | m(G (n, p̄)) = m)

)
.

By the choice of p̄, h(i) = Pr(m(G (n, p̄)) = i) is maximized at i = m. Hence, Pr(m(G (n, p̄)) =
m) ≥ n−2. Thus,

Pr
(
δ(Gm) ≤ θ · 2m/(n− 1)

)
≤

Pr
(
δ(G (n, p̄)) ≤ θp̄n

)
Pr(m(G (n, p̄)) = m)

≤ n2Pr
(
δ(G (n, p̄)) ≤ θp̄n

)
.

By Lemma 20 (iv), for every 0 < θ < 1, we can choose ρ > 0 sufficiently large such that
the probability on the right-hand side above is less than 1/n5 for every m ≥ (ρ/4)n log n
(correspondingly, p̄ ≥ (ρ/2) log n/(n − 1)). Hence, taking a union bound over the O(n2)
possible values of m, we deduce that claim (29) is true with probability at least 1−O(n−1).

Next, we prove statements (i) and (ii). Let f = o(
√

log n) be a function that goes to
∞ arbitrarily slowly, as n → ∞. Let pi = (β(log n − log log n/2) − f 2 − if)/(n − 1) and
let qi = (β(log n − log log n/2) + f 2 + if)/(n − 1), for each i ≥ 1. Let T be the smallest
integer such that pT ≤ 0.9 log n/(n − 1) and redefine pT = 0.9 log n/(n − 1). Let ρ be the
constant satisfying statement (iii) with θ = 3/4. Let T ′ be the smallest integer such that
qT ′ ≥ ρ log n/(n− 1) and redefine qT ′ = ρ log n/(n− 1). Obviously, T, T ′ = O(log n).

Claim 2. There exists a positive constant C, such that, for every 1 ≤ i < T ,

Pr
(
δ(Gpi) > d(Gpi+1

)/2
)
≤ C(f−i + log n/n),

and for very 1 ≤ i < T ′,

Pr
(
δ(Gqi) ≤ d(Gqi+1

)/2
)
≤ C(f−i + n−1).
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By Lemma 20 (i) and from the monotonicity of δ(Gp) with respect to p, a.a.s. for all
p < pT = 0.9 log n(n − 1), we have δ(Gp) = 0 and thus δ(Gp) ≤ d(Gp)/2 holds. By Claim 2,
with probability at least

1−
∑

1≤i<T

C(f−i + log n/n) = 1− o(1),

for all 1 ≤ i < T and for all pi+1 ≤ p ≤ pi,

δ(Gp) ≤ δ(Gpi) ≤ d(Gpi+1
)/2 ≤ d(Gp)/2.

Thus, a.a.s. δ(Gp) ≤ d(Gp)/2 for all p ≤ β(logn−log logn/2)−ω(1)
n−1 , since f is an arbitrary slowly

growing function in ω(1), and statement (i) follows.
By (iii) (with θ = 3/4), we only need to prove that a.a.s. δ(Gp) > d(Gp)/2 for all p

satisfying q1 ≤ p ≤ qT ′ = ρ log n/(n − 1). Similarly as in the previous argument, with
probability at least

1−
∑

1≤i<T ′
C(f−i + n−1) = 1− o(1),

for all 1 ≤ i < T ′ and for every p with qi ≤ p ≤ qi+1,

δ(Gp) ≥ δ(Gqi) > d(Gqi+1
)/2 ≥ d(Gp)/2.

Thus, a.a.s. δ(Gp) > d(Gp)/2 for all p ≥ β(logn−log logn/2)+ω(1)
n−1 , as required in statement (ii).

Finally, we prove Claim 2. In this argument the asymptotic statements are uniform for
all p ∈ [pT , p1] ∪ [q1, qT ′ ]. By Lemma 13, for σ = n−1/3 and a positive constant A,

Pr(|d(Gp)− pn| > σpn) ≤ exp(−Aσ2n2p) = o(n−1). (30)

Note that the event δ(Gpi) >
1−σ
2
pi+1n may be written as δ(Gpi) >

1+εi
2
pi(n − 1) for some

negative εi = −Θ(f/ log n). Hence, using (30) and also Lemma 19 with ε = εi and h(n) =
−β log log n/2− f 2 − if , we get that, for every 1 ≤ i < T ,

Pr

(
δ(Gpi) >

d(Gpi+1
)

2

)
≤ Pr

(
δ(Gpi) >

1− σ
2

pi+1n
)

+ Pr
(
d(Gpi+1

) < (1− σ)pi+1n
)

= O

(
log n

n
+ exp

(
−f 2 − if

β
+O(f)

))
+ o(n−1) = O(f−i + log n/n).

Similarly, we write δ(Gqi) ≤ 1+σ
2
qi+1n as δ(Gqi) ≤

1+ε′i
2
qi(n − 1) for some ε′i = Θ(f/ log n).

Using again (30) and Lemma 19 with ε = ε′i and h(n) = −β log log n/2 + f 2 + if , we obtain,
for every 1 ≤ i < T ′,

Pr

(
δ(Gqi) ≤

d(Gqi+1
)

2

)
≤ Pr

(
δ(Gqi) ≤

1 + σ

2
qi+1n

)
+ Pr

(
d(Gqi+1

) > (1 + σ)qi+1n
)

= O

(
exp

(
−f 2 − if

β
+O(f)

))
+ o(n−1) = O(f−i + 1/n).
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Proof of Theorem 3. We first prove statement (ii). Let p1 = (1−ε/2)β logn
n−1 and let p2 =

(1+ε/2)β logn
n−1 . For i = 1, 2, the number of edges in G (n, pi) is distributed as Bin(

(
n
2

)
, pi).

By Lemma 13, we have that a.a.s. m(G (n, p1)) ≥ 1−ε
1−ε/2p1

(
n
2

)
= (1 − ε)βn log n/2, and

m(G (n, p2)) ≤ 1+ε
1+ε/2

p2
(
n
2

)
= (1 + ε)βn log n/2. Then, Theorem 3 (ii) follows immediately

from Theorem 27.
We now proceed to prove statement (i) of Theorem 3. Recall that for any graph G,

t(G) = min{δ(G), d(G)/2}. First, define p0 = 0.9 log n/(n − 1), p1 = γ1 log n/(n − 1) and
p2 = γ2 log n/(n − 1), for some constants 1 < γ1 < γ2 that we specify later. We prove the
statement separately for (Gp)p0≤p≤p1 , (Gp)p1≤p≤p2 and (Gp)p2≤p≤1. For (Gp)0≤p≤p0 it is trivially
true since a.a.s. δ(Gp) = 0 for all 0 ≤ p ≤ p0, by Lemma 20 (i) and the monotonicity of δ(Gp)
with respect to p.

Part 1 (p0 ≤ p ≤ p1): Let ε > 0 be a constant chosen to satisfy Lemma 23 with γ = 1.1.
Pick a sufficiently small constant 1 < γ1 < 1.1 and recall p0 = 0.9 log n/(n − 1) and p1 =
γ1 log n/(n− 1). From Lemma 13, a.a.s.

d(Gp1) ≤ (4/3)d(Gp0). (31)

Moreover, in view of Lemma 20 (ii), we assume that γ1 is small enough so that a.a.s.

δ(Gp1) ≤ (ε/16)d(Gp1) ≤ (ε/12)d(Gp0). (32)

Colour edges in Gp1 so that all edges in Gp0 are coloured red and all edges in Gp1 \ Gp0 are
coloured blue, as described in the beginning of the section. For each vertex v ∈ Gp1 , the red
(blue) degree of v is the number of red (blue) edges incident with v. Let S be the set of ε-light
vertices of Gp0 . Since δ(Gp0) = 0 a.a.s., the ε-light vertices are a.a.s. precisely those vertices
with degree at most εd(Gp0) in Gp0 . By the choice of ε and Lemma 23, a.a.s. the vertices in
S induce no edges and have no common neighbours in the whole process (Gp)p0≤p≤p1 as blue
edges are added.

For each p0 ≤ p ≤ p1, let Sp be the set of (11ε/16)-light vertices of Gp (i.e. vertices of
degree at most δ(Gp) + (11/16)εd(Gp) in Gp). Note that a.a.s. S contains Sp for all p in this
range, since for any v ∈ Sp, its degree in Gp0 (i.e. the red degree of v in Gp) is at most

δ(Gp) + (11/16)εd(Gp) ≤ δ(Gp1) + (11/16)εd(Gp1) ≤ (ε/12)d(Gp0) + (11/12)εd(Gp0) = εd(Gp0),

where we used (31) and (32).
We just showed that a.a.s. in (Gp)p0≤p≤p1 the set of (11ε/16)-light vertices of Gp induce no

edges and have no common neighbours. Moreover, from (32) and by monotonicity of δ(Gp)
and d(Gp) with respect to p, we have that a.a.s.

δ(Gp) ≤ δ(Gp1) ≤ (ε/12)d(Gp0) ≤ (ε/12)d(Gp)

in the whole process (Gp)p0≤p≤p1 . Putting all that together, we have that a.a.s. the conditions
of Proposition 10 are satisfied in (Gp)p0≤p≤p1 (replacing ε by (11/16)ε), and therefore a.a.s.
T (Gp) = δ(Gp) simultaneously for all p in this range.
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Part 2 (p1 ≤ p ≤ p2): Recall that p1 = γ1 log n/(n − 1) and p2 = γ2 log n/(n − 1), where
γ1 is as in Part 1, and γ2 > γ1 is a sufficiently large constant. In view of Theorem 27 (iii),
we assume that γ2 is large enough so that a.a.s. δ(Gp) ≥ (3/4)d(Gp) in the whole process
(Gp)p2≤p≤1.

Define qi = (1 + 1/ log n)ip1 for each i = 0, 1, 2, . . ., and let T be the smallest integer such
that qT ≥ p2. Redefine qT = p2. We have T ≤ 2 log(γ2/γ1) log n = O(log n), since eventually

(1 + 1/ log n)2 log(γ2/γ1) logn > γ2/γ1.

To prove the statement for (Gp)p1≤p≤p2 , it suffices to see that for every 0 ≤ i ≤ T −1, we have
T (Gp) = bt(Gp)c throughout the process (Gp)qi≤p≤qi+1

with probability at least 1− 1/ log2 n,
and then simply take a union bound over all i.

Let ε be as in Lemma 23 (putting γ = γ2), and fix 0 ≤ i ≤ T − 1. We verify that with
probability at least 1 − 1/ log2 n all conditions (a’)–(e’) of Proposition 11 are satisfied in
(Gp)qi≤p≤qi+1

. We colour as before the edges of Gqi red, and the additional edges in Gqi+1
\Gqi

blue.
Let S be the set of vertices that are ε-light in Gqi (they have red degree at most δ(Gqi) +

εd(Gqi)). For each qi ≤ p ≤ qi+1, define Sp to be the set of vertices that are ε/2-light in Gp.
From Lemma 13 and Lemma 21, we have that

d(Gqi) ∼ d(Gqi+1
) and δ(Gqi+1

) ≤ (1 + ε/3)δ(Gqi) (33)

with probability at least 1−n−C , for some small enough constant C > 0 not depending on i.
These equations imply that S ⊇ Sp for all p in our range, since the red degree of any vertex
in Sp is at most

δ(Gp)+(ε/2)d(Gp) ≤ δ(Gqi+1
)+(ε/2)d(Gqi+1

) ≤ (1+ε/3)δ(Gqi)+(ε/2−o(1))d(Gqi) ≤ δ(Gqi)+εd(Gqi),

where we also used the trivial fact that δ(Gqi) ≤ d(Gqi). By Lemma 23, with probability
at least 1 − n−C the vertices in S do not get common neighbours or induced edges as the
blue edges are added in (Gp)qi≤p≤qi+1

. This implies condition (a’) replacing ε by ε/2. By
Lemma 20 (iii), there exists a constant σ > 0 such that, uniformly for all p ∈ [p1, p2], we
have that δ(Gp) ≥ σpn with probability at least 1 − n−C . Therefore, t(Gqi) ≥ σ′qi+1n with
probability at least 1 − n−C for a positive constant σ′ not depending on i. By applying
Lemma 25 to Gqi+1

with α < εσ′/4, we deduce that condition (e’) holds with probability at
least 1 − n−C during all the process (Gp)qi≤p≤qi+1

. This determines our choice of ζ. Next,

observe that Gqi satisfies condition (b’) with probability at least 1−e−C(logn)1/3 , by Lemma 14,
and also condition (c’) with probability at least 1− n−C , by Lemma 24. Therefore, in view
of (33), both Conditions (b’) and (c’) hold simultaneously in all (Gp)qi≤p≤qi+1

with probability

at least 1 − e−C(logn)1/3 . Condition (d’) holds trivially for sets S of size 1. For larger sets,
Lemma 26 applied to Gqi together with (33) imply that this condition holds in all (Gp)qi≤p≤qi+1

with probability 1− n−C .
Taking the union bound for all 0 ≤ i ≤ T − 1 = O(log n), we have that a.a.s. T (Gp) =

bt(Gp)c throughout the process (Gp)p1≤p≤p2 by Proposition 11.
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Part 3 (p2 ≤ p ≤ 1): Let γ2 be as in Part 2, and p2 = γ2 log n/(n − 1). Recall from
the definition of γ2 that a.a.s. δ(Gp) ≥ (3/4)d(Gp) in the whole process (Gp)p2≤p≤1, and
therefore Condition (a’) in Proposition 11 holds. Define qi = (1 + 1/ log n)ip2 for each
i = 0, 1, 2, . . ., and let T be the smallest integer such that qT ≥ 1. Redefine qT = 1. Observe
that T ≤ 3 log2 n, since eventually (1 + 1/ log n)3 log

2 n ≥ n2.5. The same argument as in
Part 2 shows that for every 0 ≤ i ≤ T − 1, Conditions (b’)–(e’) in Proposition 11 are
satisfied throughout the process (Gp)qi≤p≤qi+1

with probability at least 1− 1/ log3 n. Taking
the union bound over all i, we conclude that a.a.s. all condition in Proposition 11 hold and
therefore T (Gp) = bd(Gp)/2c, during the whole process (Gp)p2≤p≤1.

8 Proof of Theorem 5

We first prove statement (ii). In view of Theorem 3, we assume that T (Gm) = min{δ(Gm), bm/(n−
1)c} for all m = 0, 1, . . . ,

(
n
2

)
. Then we pick any m such that δ(Gm) ≥ d(Gm)/2 = m/(n−1).

If n−1 divides m, then T (Gm) = m/(n−1) and thus A(Gm) = m/(n−1). If n−1 does not
divide m, let m′ be the smallest integer m′ > m divisible by n−1. Since, the minimum degree
is always an integer, we have δ(Gm) ≥ dm/(n−1)e = m′/(n−1). Moreover, Gm is a spanning
subgraph of Gm′ and thus δ(Gm′) ≥ δ(Gm) ≥ m′/(n − 1). Therefore, from our assumption
on the random graph process, we have T (Gm′) = m′/(n − 1) = dm/(n − 1)e, and these
dm/(n − 1)e edge-disjoint spanning trees cover all edges of Gm, so A(Gm) = dm/(n − 1)e.
This completes the proof of the statement.

Next we proceed to prove statement (i). Let f be any function of n such that f → ∞
arbitrarily slowly and f = o(log n). Define pj = (1 + 1/f)jf/n for each j = 0, 1, 2, . . ., and
let T be the largest integer such that pT ≤ β logn

(1−ε/2)n .

Claim 3. for every 0 ≤ j < T and for every m such that pj ≤ p(m) ≤ pj+1, the bound
A(Gp(m)) = A(Gm) ≤

⌈
m+φ2
n−1

⌉
holds in the random graph process (Gp)p∈[pj ,pj+1] with proba-

bility at least 1− 1/(pjn)2.

Assuming Claim 3, the probability that A(Gm) ≤
⌈
m+φ2
n−1

⌉
fails somewhere in the random

graph process between G (n, p0) and G (n, pT ) is at most

1

f 2

T−1∑
j=0

(1 + 1/f)−2j ≤ 1

f 2

∞∑
j=0

(1 + 1/f)−j =
1 + 1/f

f
= o(1). (34)

Moreover, we have that pT ≥ β logn
(1−ε/4)n eventually (for n > n0 depending only on f). Then

there is σ > 0 such that a.a.s. m > (1 + σ)βn log n for every m with p(m) ≥ pT . Then, by
Theorem 3 (ii), a.a.s. δ(Gm) > d(Gm)/2 for all m with p(m) ≥ pT . Thus, we only need to
restrict our discussion to pj with j ≤ T .

Similarly, let T ′ be the largest integer such that pT ′ ≤ β logn
(1+ε/2)n

.

Claim 4. for every 0 ≤ j < T ′ and for every m such that p(m) ∈ [pj, pj+1], the bound
A(Gm) ≥

⌈
m+φ1
n−1

⌉
holds in the random graph process (Gp)p∈[pj ,pj+1] with probability at least

1− 1/(pjn)2.

By the same argument as in (34), assuming Claim 2, the probability that A(Gm) ≥⌈
m+φ1
n−1

⌉
fails somewhere in the random graph process (Gp)p∈[p0,pT ′ ] is also o(1). Moreover,
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note that since pT ′ ≥ β logn
(1+2ε/3)n

, then a.a.s. for every m with p(m) ∈ [pT ′ , 1], we have 2m/n ≥
β logn

(1+3ε/4)
by Lemma 13, and therefore eventually φ1 ≤ 1/2 for all m in this range. Hence, for

all m not divisible by n− 1, we eventually have

A(Gm) ≥
⌈ m

n− 1

⌉
=
⌈m+ 1/2

n− 1

⌉
=
⌈m+ φ1

n− 1

⌉
.

Otherwise, for m divisible by n − 1, the condition δ(Gm) < d(Gm)/2 = m/(n − 1) implies
A(Gm) > m/(n−1), since we cannot have a full factorisation of Gm into m/(n−1) spanning
trees, so then

A(Gm) ≥ m

n− 1
+ 1 =

⌈m+ 1/2

n− 1

⌉
=
⌈m+ φ1

n− 1

⌉
.

Putting everything together, we showed that a.a.s. (1) holds simultaneously for all Gm in
the random graph process Gp for p between f/n and 1. Given any m0 = ω(n) as in the
statement, we may simply choose f = m0/n. Then a.a.s. m(Gf/n) = m(G (n, f/n)) ≤
(3/4)fn = (3/4)m0, and statement (a) holds for the desired range of m. It only remains to
prove Claims 3 and 4.

Proof of Claim 3. In this proof the asymptotic statements are uniform for all pj and depend
only on f . Given any 0 ≤ j < T , we consider the random graph process (Gp)p∈[pj ,pj+1].

Define δj = δ(Gpj), dj = d(Gpj), mj = m(Gpj), tj = min{δj, dj/2}. By Lemma 13, we have

dj ∼ dj+1 ∼ npj with probability at least 1− Ce−pjn for a positive constant C.
Let ε̂ > 0 be a sufficiently small constant so that

e−1
(

2e

1 + 2ε̂

)(1+2ε̂)/2

< e−(1−ε)/β and e−1
(

2e

1− ε̂

)(1−ε̂)/2

> e−(1+ε/4)/β. (35)

Colour the edges of Gmj = Gpj red. Let Gmj+1
= Gpj+1

. Colour edges in Gmj+1
\ Gmj blue.

For any vertex v ∈ Gmj+1
, define the red (blue) degree of v to be the number of red (blue)

edges that are incident with v. Call a vertex light if its red degree is at most (1+2ε̂)
2

dj+1. A

vertex is called heavy if its red degree is at least (3/4)dj+1. The vertices that are neither
light nor heavy are called medium vertices. We have that for any constant α > 0, with
probability 1− e−pjn, by Lemma 13 and Lemma 15,∣∣∣∣mj+1 − pj+1

(
n

2

)∣∣∣∣ < αpj+1n
2, ∆(Gmj+1

) = O(log n), (36)

where ∆(G) denotes the maximum degree of G. By Lemma 16 with k = 1+2ε̂
2
dj+1, the

expected number of light vertices is at most

n

(
1

e

(
2e

1 + 2ε̂

) 1+2ε̂
2

+ o(1)

)pn

.

Thus by Markov’s inequality and (35), the number of light vertices is

` ≤ n

dj+1 exp
(

(1−ε)
β

2mj+1

n

) = o(n), (37)
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with probability at least 1 − e−Dpjn, for a positive constant D. Similarly, by Lemma 16
with k = 3

4
dj+1, with probability 1− e−Dpjn for a positive constant D, the number of heavy

vertices is
h = n− o(n). (38)

For the following construction, assume (36), (37) and (38) hold. We add g = dj+1` new
edges (different from the previous red and blue edges) to Gmj+1

, which we colour green, in

such a way that every light vertex is incident with exactly dj+1 green edges; every heavy
vertex is incident to at most one green edge; and no green edge is incident to any medium
vertices. (So green edges only connect light and heavy vertices.) This can be done by (37),
since the total number of green edges

g ≤ n

exp
(

(1−ε)
β

2mj+1

n

)
is much smaller than the number of heavy vertices eventually. Finally, greedily add n yellow
edges to Gmj+1

, different to all previous red, blue and green ones, in a way that each yellow
edge connects two heavy vertices and each heavy vertex is incident with at most 3 yellow
edges (this can be done greedily since we have h ∼ n heavy vertices by (38) and the maximum
degree (adding red, blue and green degrees together) is O(log n) by (36)).

We may regard the sequence of graphs Gmj ⊂ Gmj+1, · · · ⊂ Gmj+1
as a process in which

we sequentially add blue edges to Gmj , so the edges of each Gm are precisely the red ones
together with the first m − mj blue ones. For each m in our range, we define G′m as
E(G′m) = Gm ∪ Eg ∪ Ey, where Eg is the set of green edges added to Gmj+1

and Ey is an
arbitrary subset of yellow edges added to Gmj+1

so that the number of edges of the resulting
graph G′m is a multiple of n − 1. We now verify that G′mj , . . . , G

′
mj+1

satisfy all conditions
(a’)–(e’) of Proposition 11, assuming that (36), (37) and (38) and some additional events
hold. We give bounds on the probabilities of these events.

First observe that for all mj ≤ m ≤ mj+1, we have d(G′m) ≤ 2(mj+1+g+n)

n−1 ≤ dj+1 + 2 and

similarly d(G′m) ≥ 2mj
n−1 = dj, so

d(G′m) ∼ dj+1 ∼ dj (39)

Hence, for all m in the range,

δ(G′m) ≥ (1 + 2ε̂)dj+1

2
≥ (1 + ε̂)d(G′m)

2
, (40)

so (a’) holds and δ = Ω(d) = ω(1). For any S, let dr(S) denote the average red degree of

S. By Lemma 14, with probability 1 − e−C(pjn)
1/3

for a positive constant C, for all S with
S ≥ ζn, dr(S) ≥ d(Gmj)(1 − o(1)) ≥ d(G′m)(1 − o(1)) by (39). Thus, (b’) holds by noting
that d(S) ≥ dr(S). By applying Lemma 24 to the red edges and using (39), we deduce
condition (c’) holds with probablity at least 1− e−Cpjn2

for all G′m.
For (e’), first note that t(G′mj) = Ω(dj+1). Then, Lemma 25 applied to Gmj+1

(i.e. only

red and blue edges) shows that with probability 1− Ce−(pjn)2 all sets S of size s < ζn have
at most (ε̂/8)t(G′mj)s red and blue edges inside. Let G′′ be obtained by adding all g green
edges and all n yellow edges. So G′m ⊆ G′′ for all mj ≤ m ≤ mj+1. We bound the number
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of edges induced by S in G′′. Let s2 ≤ s be the number of heavy vertices in S. Each green
edge induced by S must be incident to one of the s2 heavy vertices inside, and the number
of yellow edges induced by S is at most 3s2, since each heavy vertex is incident to at most 3
of them. Therefore, the number of green and yellow edges induced by S is at most 4s2 ≤ 4s,
and the total number of edges induced by S in G′′ (and thus, in all G′m, mj ≤ m ≤ mj+1)
is at most (ε̂/8)t(G′mj)s + 4s ≤ (ε̂/4)t(G′mj)s, since t(G′mj) → ∞. Thus (e’) holds for all
mj ≤ m ≤ mj+1, since t(G′mj) ≤ t(G′m).

Finally, we prove (d’): Let S be a set with 1 ≤ |S| ≤ n/2 (otherwise we take S). Suppose
first that 1 ≤ |S| ≤ ζn. From what we proved before for (e’) and (40), the number of edges
induced by S is at most (ε̂/4)t(G′m)s and so, for each G′m,

E(S, S) ≥ δ(G′m)s− (ε̂/4)t(G′m)s ≥
(1 + ε̂)d(G′mj)

2
s− (ε̂/4)t(G′mj)s ≥ t(G′mj)s ≥ t(G′mj).

Otherwise, if ζn ≤ |S| ≤ n/2, (c’) gives us what we need using only red edges.

Hence, in view of Proposition 11, with probability 1 − e−C(pjn)
1/3 ≥ 1 − 1/(pjn)2 since

pjn ≥ f = ω(1), for all mj ≤ m ≤ mj+1, we have

T (G′m) = m(G′m)/(n− 1) = d(m+ g)/(n− 1)e ≤ d(m+ φ2)/(n− 1)e,

since by construction m(G′m) is the smallest integer that is at least m+ g and is divisible by
n− 1.

This implies the claim since

A(Gm) ≤ A(G′m) = m(G′m)/(n− 1) ≤ d(m+ φ2)/(n− 1)e.

Proof of Claim 4. We pick a constant ε̂ > 0 as in (35). By (36) and the definition of pj, with
probability 1− e−pjn, for all mj ≤ m ≤ mj+1 we have

A(Gm) ≥ dm/(n− 1)e ≥ d(Gmj)/2 > (1− ε̂)d(Gmj+1
)/2 (41)

and the maximum degree of Gm is O(log n). Let us redefine light vertices of Gmj+1
to be

vertices with degree (red degree plus blue degree) at most (1− ε̂)d(Gmj+1
)/2. By Lemma 16

with k = (1−ε̂)
2
d(Gmj+1

) and (35), the expected number of light vertices in Gmj+1
is at least

n

√
1

k

(
1

e

(
2e

(1− ε̂)

) 1−ε̂
2

+ o(1)

)pn

≥ ne−(1+ε
′/4)pn/β ≥ 2ne−

(1+ε/4)
β

2mj
n ,

for some constant ε′ < ε and the inequality holds since f = o(log n). Note that with
probability at least 1− n−C , for all j ≤ T ′, 2mj ≤ (1 + ε/8)βn log n and so

(1 + ε/4)

β

2mj

n
≤ (1 + ε/4)(1 + ε/8)

1 + ε/2
log n ≤ σ log n,

for some 0 < σ < 1, depending only on ε. Then, by Lemma 17 and by Chebyshev’s inequality,
there are

`′ ≥ n

exp
(

(1+ε/4)
β

2mj
n

)
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light vertices in Gmj+1
with probability at least 1−O(log n/n)−nσ−1 ≥ 1−1/(pjn)2. By (41),

with probability at least 1 − e−pjn, these light vertices have degree in Gm strictly less than
A(Gm) for all m in the range mj ≤ m ≤ mj+1 since Gm ⊆ Gmj+1

.
For each Gm we construct G′m as follows. Let Fm be the set of A(Gm) edge-disjoint

forests covering Gm. For every light vertex v and for every forest F ∈ Fm, if F has no edge
incident to v, then we add a new edge connecting v to some non-light vertex, and make this
new edge be part of F (this can always be done since both |Fm| and the maximum degree
are O(log n) and the number of non-light vertices is n− o(n)). Observe that G′m has at least
m + `′ edges since for each light vertex v we added at least one edge as the degree of v is
less than |Fm| = A(Gm). By construction, G′m and Gm have the same arboricity, so

A(Gm) = A(G′m) ≥ d(m+ `′)/(n− 1)e ≥ d(m+ φ1)/(n− 1)e.

9 Proof of Theorem 4

The main task in this section is to prove part (ii) of Theorem 4. We will need the following
lemma bounding the average degree of the subgraphs of G (n, p) that are not too large.

Lemma 28. Let G ∼ G (n, p), where p ∼ c/n for some constant c > 0.

(a) If c ≤ 5 then for every ε > 0, there exists another constant α = α(ε) > 0, such that
a.a.s. all subgraphs of G with order at most αn have average degree at most 2 + ε.

(b) There exists an absolute constant α > 0 such that for all c ≥ 5, a.a.s. all subgraphs of
G with order at most αn have average degree at most c/2.

Proof. For part (a): let Xs denote the number of sets S ⊆ [n] with |S| = s and |E[S]| >
(1 + ε/2)s. Let r = s/n. Then

EXs ≤
(
n

s

)(
s2

d(1 + ε/2)se

)(
c+ o(1)

n

)(1+ε/2)s

≤

(
e

r

(
ern

(1 + ε/2)

c+ o(1)

n

)(1+ε/2)
)s

≤
(
(C + o(1))rε/2

)s
, (42)

where C = e2+ε/251+ε/2 is a constant depending only on ε. Thus, by choosing α = α(ε)
sufficiently small, we have that for all r ≤ α, Crε/2 < 1/2. It follows then that

∑
1≤s≤αn

EXs =
∑

1≤s≤logn

EXs +
∑

logn<s≤αn

EXs = O

(
logε/2 n

nε/2
+ 2− logn

)
= o(1).

Part (b) follows by a similar calculation, with 1 + ε/2 replaced by c/4. Then, (42) becomes

EXs ≤
(
(1 + o(1))4e2(4er)c/4−1

)s
< 2−s,

by choosing α such that 4e2(4eα)1/4 < 1/3. Then,
∑

1≤s≤αnEXs = o(1), by the same
calculation as in part (a).
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Much of the argument that follows relies on the analysis of the structure of the k-core
of G (n, p), which is the largest subgraph of G (n, p) with minimum degree at least k. We
require some definitions. For any integer k ≥ 0 and real µ > 0, let

fk(µ) = e−µ
∑
i≥k

µi

i!
.

For any k ≥ 2 and µ > 0, define hk(µ) = µ
fk−1(µ)

, and let

ck = inf{hk(µ) : µ > 0}. (43)

Claim 5.

(i) For every k ≥ 2, ck is a real. Moreover, 1 = c2 < c3 < · · · < ck < ck+1 < · · · and
limk→∞ ck =∞.

(ii) For k ≥ 3, there is a unique µk > 0 where hk attains a global minimum, so in particular
ck = h(µk) = min{hk(µ) : µ > 0}. For k = 2, we have c2 = 1 = limµ→0 h2(µ), and we
define µ2 = 0 for convenience.

(iii) For every k ≥ 3, hk(µ) is a strictly increasing continuous function in (µk,∞), and
limµ→∞ hk(µ) =∞.

In view of this claim, for every k ≥ 2 and c > ck, we can define µc,k > µk to be the unique
solution of hk(µ) = c in (µk,∞).

Claim 5 and the following theorem follow from a result about the threshold for the
appearance of a giant k-core, first proved by Pittel, Spencer and Wormald [38], and later
re-proved by many authors (see [28, 26, 33]).

Theorem 29. Let k ≥ 2 be fixed and let ck be defined as in (43). Then for all c > ck, a.a.s.
G (n, c/n) has a non-empty k-core with fk(µc,k)n+ o(n) vertices and 1

2
µc,kfk−1(µc,k)n+ o(n)

edges. For all k ≥ 3 and c < ck, a.a.s. G (n, c/n) has an empty k-core.

We are particularly concerned about the situation in which the average degree of the
k-core of G (n, p) is around 2k−2. So we need to ensure that the k-core has “at its birth” an
average degree strictly smaller than 2k − 2. This is often assumed as true in the literature;
we include a proof for completeness in the Appendix.

Lemma 30. Let k ≥ 3, and define ξk(µ) = µfk−1(µ)/fk(µ) for µ > 0. Then, ξk(µ) is a
strictly increasing continuous function with limµ→∞ ξ(µ) =∞. Moreover, ξk(µk) < 2k − 2.

Remark. Note that ξk(µk) is approximately the average degree of the k-core of G (n, p) at
its birth, by Theorem 29.

In view of Lemma 30, for every k ≥ 3, we define µ̄k to be the only positive solution of
ξk(µ̄k) = 2k − 2. We also define c̄k = hk(µ̄k). Observe that Lemma 30 also implies that
µk < µ̄k and, since hk(µ) is strictly increasing for µ > µk, we have that

ck < c̄k. (44)
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Cain, Sanders and Wormald [5] proved that for every k ≥ 2 and ε > 0, a.a.s. we have
that if the average degree of the (k + 1)-core of G (n, p) is at most 2k − ε, then G (n, p)
is k-orientable: all its edges can be oriented so that no vertex has indegree more than k.
This implies that c ∼ c̄k is a sharp threshold for G (n, c/n) to be (k − 1)-orientable, as it
is obvious that if the average degree of the k-core exceeds 2(k − 1) then the graph cannot
be (k − 1)-oriented. On the other hand, Hakimi’s characterisation [24] tells that a graph is
(k − 1)-orientable if and only if it contains no subgraph whose average degree is more than
2(k − 1). These two results immediately imply the following theorem.

Theorem 31. Given any positive integer k ≥ 3, c ∼ c̄k is a sharp threshold of G (n, c/n) for
containing a subgraph with average degree at most 2(k − 1).

Let d∗(G) denote the average degree of a densest subgraph of G. Theorem 31 says that
c̄k is the sharp threshold for d∗(G (n, c/n)) ≤ 2(k−1). Next we prove that, roughly speaking,
d∗(G (n, c/n)) is a continuous function of c.

Lemma 32. Given σ > 0, there are constants δ1, δ2 > 0 such that the following holds for
any constants ε > 0 and c ≥ 1 + σ. Suppose that p ∼ c/n and p′ = p + ε/n. Assume that
G (n, p) ⊆ G (n, p′) are coupled in a way that G (n, p′) is generated by including each edge not
in G (n, p) independently with probability (p′ − p)/(1− p). Then, a.a.s.

d∗(G (n, p)) + δ1ε ≤ d∗(G (n, p′)) ≤ d∗(G (n, p)) + δ2ε.

Proof. By Theorem 29 and since c ≥ 1 +σ = c2 +σ, there is a δ (depending only on σ) such
that a.a.s. the 2-core of G (n, p) has average degree at least 2 + δ. It is easy to show that
the average degree of G (n, p) is a.a.s. at least c/2 by the Chernoff bound. Hence, a.a.s. the
densest subgraph of G (n, p) has average degree at least max{2+ δ, c/2}. By Lemma 28(a,b),
there is a constant α = α(σ) > 0 (as δ depends only on σ) such that a.a.s. the densest
subgraph of G (n, p) must have order at least αn.

Let H be a densest subgraph of G (n, p), and let S = V (H). Then, d∗(G (n, p)) is the
average degree of H. Clearly, H is the subgraph of G (n, p) induced by S. Denote by H ′

the subgraph of G (n, p′) induced by S, and let d′ denote the average degree of H ′. Let
s = |S|. We have shown that a.a.s. s ≥ αn. Conditioning on that, the number of edges in
KS (the complete graph on vertex set S) that are not in H is at least As2 for some absolute
constant A > 0. Each of these at least As2 edges are present in G (n, p′) with probability
(p′ − p)/(1 − p) ∼ ε/n, which is at least ε/2n for all large n. Hence, by Theorem 12 (the
Chernoff bound), a.a.s. d′−d∗(G (n, p)) ≥ δ1ε, by setting δ1 = Aα/4. This implies that a.a.s.
d∗(G (n, p)) + δ1ε ≤ d∗(G (n, p′)), since d∗(G (n, p′)) ≥ d′.

Similarly, consider a densest subgraph H ′2 of G (n, p′), and let H2 be the subgraph of
G (n, p) induced by V (H ′2). A similar argument as before yields that a.a.s. G (n, p′) has
at most εn more edges than G (n, p). Note that removing a set of at most εn edges from
G (n, p′) can decrease the average degree of H ′2 by at most 2ε/α, since |V (H ′2)| ≥ αn a.a.s. by
Lemma 28. Therefore, d∗(G (n, p)) is at least the average degree of H2, which is a.a.s. at least
d∗(G (n, p′)) − δ2ε, by setting δ2 = 2/α. This implies the second inequality in the lemma.
(Note that both δ1 and δ2 depend only on α, and thus depend only on σ, as desired.)

The following lemma follows directly from Theorem 31, Lemma 32, Claim 5 and (44).
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Lemma 33. For every k ≥ 3, c̄k < c̄k+1. Moreover, limk→∞ c̄k =∞.

Corollary 34. Let J = {c̄k : k ≥ 3}. For every constant c ∈ R≥1 \ J and every p ∼ c/n,
A(G (n, p)) = k a.a.s., where k ≥ 2 is the smallest integer such that c < c̄k+1. Moreover, for
every c = c̄k ∈ J and every p ∼ c/n, A(G (n, p)) ∈ {k − 1, k} a.a.s.

Proof. Let c ≥ 1 be an arbitrary real number not in J . From Lemma 33 and since 1 < c3 <
c̄3, we must have that either 1 ≤ c < c3 or there is an integer k ≥ 3 for which ck < c < ck+1.
Let ε = (ck+1−c)/2 (in the former case we set k = 2) and define c′ = c+ε. Then c < c′ < ck+1.

Let p ∼ c/n and set p′ = c′/n. By the definition of c′ < c̄k+1, and by Theorem 31, a.a.s.
d∗(G (n, p′)) ≤ 2k. Then by Lemma 32, a.a.s. d∗(G (n, p)) ≤ 2k − δ for some constant δ > 0.
By Theorem 9, a.a.s. A(G (n, p)) ≤ k. On the other hand, we have either c > ck if k ≥ 3 or
1 ≤ c < c3 if k = 2. In the first case, a.a.s. the k-core of G (n, p) has average degree strictly
greater than 2(k − 1) by the definition of ck and Theorem 29, and hence by Theorem 9,
a.a.s. A(G (n, p)) ≥ k. It follows then that a.a.s. A(G (n, p)) = k. In the second case, it is
well known that a.a.s. G (n, p) contains a cycle when c ≥ 1 and thus A(G (n, p)) ≥ 2 = k. It
follows immediately that a.a.s. A(G (n, p)) = 2 in this case.

The second statement of the corollary concerning c = c̄k ∈ J , follows immediately from
a standard coupling since the arboricity is a non-decreasing parameter as we add more edges
to the graph.

Proof of Theorem 4. Part (i) follows as a corollary of Theorem 5. For part (ii), we consider
p = Θ(1/n). Assume p ≤ c/n for some constant c > 0. Then there exists a constant
0 < σc < 1 such that a.a.s. the number of vertices in G ∼ G (n, p) with degree 0 is at least
σcn, whereas a.a.s. m(G) = (1 + o(1))p

(
n
2

)
. Hence, every forest contained in G has at most

(1−σc)n edges. It follows then that A(G) ≥ m(G)/(1−σc)n ≥ 1
1−σcpn/2 as required. Next,

we will prove that for all p = Θ(1/n), a.a.s. A(G (n, p)) is concentrated on two bounded
values. This directly implies that A(G (n, p)) is bounded and thus, for every p = Θ(1/n),
a.a.s. A(G (n, p)) = (1 + Θ(1))pn/2.

We proceed to prove that A(G (n, p)) is a.a.s. concentrated on two values. We assume p ∼
c/n for some constant c > 0, and our claim holds for all p = Θ(1/n) by the subsubsequence
principle (see [27]). We consider two cases. If c ≤ 1, then all vertices of G (n, p) with p ∼ c/n
are contained in isolated trees except a set S of o(n) vertices [13, Theorem 4b]. By Lemma 28,
a.a.s. any subset S ′ ⊆ S contains at most 1.1|S ′| edges. Hence, a.a.s. there is no subgraph
H of G (n, p), such that |E(H)|/(|H| − 1) > 2. It follows then that A(G (n, p)) ∈ {1, 2} in
this case. Otherwise, the a.a.s. two-value concentration of A(G (n, p)) for all c ≥ 1, and the
a.a.s. one-value concentration of A(G (n, p)) for all c ∈ R≥1 \ J follow from Corollary 34.

Finally, when p = o(1/n), we have that G (n, p) is a.a.s. acyclic by [13]. So a.a.s.
A(G (n, p)) ≤ 1.

10 Extension to random hypergraphs

The Nash-Williams characterisations of the STP number of the arboricity of graphs generalise
to hypergraphs. Of course for hypergraphs we need to extend the concepts of connectivity,
spanning trees and forests properly. This has been carefully investigated in [17]; in particular,
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Theorems 8 and 9 hold also for hypergraphs by using the concepts of hyperforests and
spanning hypertrees in [17]. See [17, Theorems 2.8 and 2.10] for details. It is easy to
work out that our deterministic propositions 10 and 11 can be generalised (by some slight
adjustment of the constants involved in the statements and minor modifications of the proofs)
for h-uniform hypergraphs, for any constant h ≥ 2. Then, all the probabilistic results in
Section 4 should extend naturally to random uniform hypergraphs. We believe that a direct
extension of our arguments in this paper will yield all results in Section 2 for random uniform
hypergraphs.
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Appendix

Proof of Lemma 30. The fact that ξk(µ) is strictly increasing follows from (5.10) in [38]. It
is straightforward to verify that limµ→∞ ξk(µ) =∞.

Define for k ≥ 3 and µ > 0

gk(µ) =
∑
i≥0

µi

[k − 1 + i]i+1

=
(k − 2)!

µk−1

∑
i≥k−1

µi

i!
.

Claim 6. For every k ≥ 3 and µ ≥ 1.7(k − 1), we have gk(µ) > 1.

Since gk is strictly increasing in (0,∞), it suffices to prove the claim for µ = 1.7(k − 1).
Cases 3 ≤ k ≤ 50 can be verified by direct computations (since we are aiming at a strict
inequality, it suffices to compute a finite number of terms in the series defining gk(µ)). So,
let’s assume k ≥ 51, and put a = d(k − 1)/4e and b = d(k − 1)/2e. Then

gk(µ) >
b∑
i=a

µi

[k − 1 + i]i+1

>
b− a+ 1

k − 1

(
µ

k − 1 + b

)a
≥ 1

4

(
1.7(k − 1)

d1.5(k − 1)e

)(k−1)/4

≥ 1

4

(
1.7

1.52

)(k−1)/4

> 1,

which completes the proof of the claim.
Recall that for k ≥ 3, hk(µ) has a global minimum at µk. In particular, µk satisfies

hk
′(µk) = 0, which is equivalent to

(1 + µk)
∑
i≥k−1

µk
i

i!
= µk

∑
i≥k−2

µk
i

i!
.

Easy manipulations imply that µk is determined by 1 = gk(µk). By Claim 6 and since gk is
strictly increasing, we deduce that

µk < 1.7(k − 1).

Since ξk(µ) is strictly increasing, in order to prove the second statement in the lemma it
suffices to show that ξk(µ) < 2k − 2 for µ = 1.7(k − 1). This can be verified by direct
computations for 3 ≤ k ≤ 24. Suppose otherwise that k ≥ 25. Then, we have

µk−1

(k − 1)!
=

[k + 7]8
µ8

µk+7

(k + 7)!
≤ (k + 7)8

µ8

µk+7

(k + 7)!
≤
(

k + 7

1.7(k − 1)

)8
µk+7

(k + 7)!
< 0.15

µk+7

(k + 7)!
,

and therefore

µ

2k − 2

∑
i≥k−1

µi

i!
=

1.7

2

µk−1

(k − 1)!
+

1.7

2

∑
i≥k

µi

i!
≤ 1.7

2
0.15

µk+7

(k + 7)!
+

1.7

2

∑
i≥k

µi

i!
<
∑
i≥k

µi

i!
.

This implies that µ
2k−2fk−1(µ) < fk(µ), and hence ξk(µ) < 2k − 2, as desired.
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