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Some notation

n vertices, for n→∞

Definition
Event En holds a.a.s. (asymptotically almost surely) if

limn→∞ P(En) = 1.
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Perfect matchings and Hamilton cycles. . .

Perfect matching Hamilton cycle

Perfect matching: matching of size bn/2c

∃ Hamilton cycle =⇒ ∃ Perfect matching
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. . . in random graphs.

Is it true that

{
δ ≥ 1 ⇒ ∃ perfect matching
δ ≥ 2 ⇒ ∃ Hamilton cycle

?

Sometimes. . .

Theorem (Bollobás & Frieze ‘85):

In classical random graphs G (n, p) and G (n,m), it is a.a.s. true.

Thm (Balogh, Bollobás & Walters + Krivelevich & Müller + P-G & Wormald ‘11):

Same for random geometric graphs.

. . . but not always!

Theorem (Robinson & Wormald ‘94):

For d ≥ 3, a.a.s. random d-regular graphs have a Hamilton cycle.
False for d = 2.

Theorem (Bohman & Frieze ‘09):

Same for random m-out graphs.
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m-out model:

m = 3 (out-degree)

n vertices

(loops and multiple edges allowed)
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Preferential attachment:

PA(n,m): Yule ‘25; Barabási & Albert ‘99

n vertices, m = 3 (out-degree)

Preferential attachment rule: P(j → i) � deg(i)

Rich get richer!
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Preferential attachment:

PA(n,m): Yule ‘25; Barabási & Albert ‘99

n vertices, m = 3 (out-degree)

Preferential attachment rule: P(j → i) � deg(i)

Theorem (Bollobás, Riordan, Spencer & Tusnády ‘01):

For fixed m ∈ N, a.a.s. PA(n,m) has a power-law degree
distribution: For all k ≤ n1/15, Xk ∼ cmk

−2n,
where Xk is the number of vertices of degree at least k .

Theorem (Bollobás & Riordan ‘04):

For m ≥ 2, a.a.s. PA(n,m) is connected.
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Uniform attachment:

UA(n,m): Intermediate model between m-out and PA(n,m)

n vertices, m = 3 (out-degree)

Uniform attachment rule: ∀i , i ′ ≤ j , P(j → i) = P(j → i ′)

Old get slightly richer!
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Main results:

Theorem:
For m ≥ 159, a.a.s. UA(n,m) has a perfect matching.
For m ≥ 3,214, a.a.s. UA(n,m) has a Hamilton cycle.
For m ≥ 1,260, a.a.s. PA(n,m) has a perfect matching.
For m ≥ 29,500, a.a.s. PA(n,m) has a Hamilton cycle.

Theorem (Bonato, McRury, Nicolaidis, Ternovsky, P-G, Prałat &
del Río-Chanona ‘15):

For m = 2, a.a.s. PA(n,m) has no Hamilton cycle.

Theorem:
For m = 2, a.a.s. PA(n,m) has no perfect matching.
For m = 2, a.a.s. UA(n,m) has no Hamilton cycle.
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Two-round exposure:

UA(n,m), m = m1 +m2

UA(n,m1)

UA(n,m2)

UA(n,m) = UA(n,m1) ∪ UA(n,m2) (independent)
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Building Hamilton cycles:

2-round exposure: UA(n,m) = UA(n,m1) ∪ UA(n,m2)

First round — UA(n,m1):

UA(n,m1) a.a.s.:
∀K s.t. |K | ≤ 2εn, |N(K )| ≥ 2|K | (expansion),
longest path has length L ≥ (1− ε/2)n.

Still true if we add edges!

L(G ) = length of a longest path in G .

Second round — add some edges of UA(n,m2):

We build sequence UA(n,m1) = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gεn.
Gi “improves” Gi−1 if L(Gi ) > L(Gi−1) or Gi contains HC.
We show: for 1 ≤ i ≤ εn, P(Gi improves Gi−1) ≥ 3/4.
A.a.s. there are at least (ε/2)n improving steps, so we win!
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Expansion properties

N(S) is the strict neighbourhood of S .
(Contains vertices not in S but adjacent to some vertex in S .)

S N(S)

Lemma:
Let α ∈ (0, 1). If m = m(α) is large enough, then a.a.s.
every set of vertices K with |K | ≤ αn satisfies |N(K )| ≥ 2|K |.

We will use:
|N(K )| ≥ |K | for perfect matchings, and
|N(K )| ≥ 2|K | for Hamilton cycles.
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Density properties

Lemma:
If m = m(ε) is large enough, then a.a.s.
(i) All sets of vertices A with |A| ≥ εn induce some edges.
(ii) All disjoint pairs B,C with |B|, |C | ≥ εn induce edges across.

A

Proof (First moment method):

P(∃ independent sets of size εn) ≤ E(# of such sets) = o(1).

Same for large pairs of sets with no edges across.
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Density properties (continued)

Lemma:
If m = m(ε) is large enough, then a.a.s.
(i) All sets of vertices A with |A| ≥ εn induce some edges.
(ii) All disjoint pairs B,C with |B|, |C | ≥ εn induce edges across.

Corollary

(i) ⇒ ∃ matching of size at least (1− ε)n/2.
(ii) ⇒ ∃ path of length at least (1− 2ε)n.

B C
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Building Hamilton cycles:

2-round exposure: UA(n,m) = UA(n,m1) ∪ UA(n,m2)

First round — UA(n,m1):

UA(n,m1) a.a.s.:
∀K s.t. |K | ≤ 2εn, |N(K )| ≥ 2|K | (expansion),
longest path has length L ≥ (1− ε/2)n.

Still true if we add edges!

L(G ) = length of a longest path in G .

Second round — add some edges of UA(n,m2):

We build sequence UA(n,m1) = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gεn.
Gi “improves” Gi−1 if L(Gi ) > L(Gi−1) or Gi contains HC.
We show: for 1 ≤ i ≤ εn, P(Gi improves Gi−1) ≥ 3/4.
A.a.s. there are at least (ε/2)n improving steps, so we win!
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Building Hamilton cycles: Longest paths

Definition:
Given graph G ,
A = {v : v is an end of a longest path of G}
Given v ∈ A,
B(v) = {w 6= v : ∃ longest path P with ends v ,w}

Lemma:
Suppose G is connected and does not have a Hamilton cycle.
If we add an edge between v ∈ A and B(v), then we either
increase the length of a longest path or create a Hamilton cycle.

v ∈ A w ∈ B(v)
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Building Hamilton cycles: Pósa’s rotations

path (P, a)

a b

rotation (P, a)→ (P ′, a)

a b

END(P, a) = {possible ends of (P, a) after sequence of rotations}
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Building Hamilton cycles: Longest paths

Lemma:
Let P be a longest path of a graph G and a one of its ends. Then,

|N(END(P, a))| < 2|END(P, a))|.

Proof:

N(END(P, a)) ⊆ V (P) (since P is a longest path)
If w ∈ N(END(P, a)) then w is adjacent in P to some vertex
in END(P, a)
So |N(END(P, a))| ≤ 2|END(P, a))| − 1.
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Building Hamilton cycles:

2-round exposure: UA(n,m) = UA(n,m1) ∪ UA(n,m2)

First round — UA(n,m1):

UA(n,m1) a.a.s.:
∀K s.t. |K | ≤ 2εn, |N(K )| ≥ 2|K | (expansion),
longest path has length L ≥ (1− ε/2)n.

Still true if we add edges!

L(G ) = length of a longest path in G .

Second round — add some edges of UA(n,m2):

We build sequence UA(n,m1) = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gεn.
Gi “improves” Gi−1 if L(Gi ) > L(Gi−1) or Gi contains HC.
We show: for 1 ≤ i ≤ εn, P(Gi improves Gi−1) ≥ 3/4.
A.a.s. there are at least (ε/2)n improving steps, so we win!
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Building Hamilton cycles:

Recall:
Sequence UA(n,m1) = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gεn.
For each Gi : ∀K s.t. |K | ≤ 2εn, |N(K )| ≥ 2|K | (expansion).

Lemma:
For each Gi : |A| ≥ 2εn and ∀v ∈ A, |B(v)| ≥ 2εn.

Proof:
Let P be a longest path and v one of its ends.

|N(END(P, v))| < 2|END(P, v)|,
END(P, v) ⊆ B(v) ⊆ A.
So |A| ≥ |B(v)| ≥ |END(P, v)| > 2εn.

Recall:
Adding an edge between v ∈ A and w ∈ B(v) will improve Gi .
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Building Hamilton cycles:

Construction of UA(n,m1) = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gεn

For each 0 ≤ i ≤ εn − 1:
Consider Gi . (Update A, etc.)
Pick youngest unmarked v ∈ A, and mark it.
Expose edges in UA(n,m1) from v to older vertices.
Add them to Gi to form Gi+1

If there are edges between v and B(v), then Gi+1 improves Gi .

A

|A| ≥ 2ǫn

We have: P(Gi+1 improves Gi ) ≥ 1− (1− ε)m2 > 3/4.
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Thank you
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