Perfect matchings and Hamiltonian cycles in the preferential attachment model



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 1 / 21

・ 戸 ト ・ 三 ト ・

*n* vertices, for  $n \to \infty$ 

#### Definition

Event  $E_n$  holds a.a.s. (asymptotically almost surely) if

 $\lim_{n\to\infty} \mathsf{P}(E_n) = 1.$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 2 / 21

# Perfect matchings and Hamilton cycles...



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 3 / 21

DQC

< ∃ ►

# Perfect matchings and Hamilton cycles...



Perfect matching: matching of size  $\lfloor n/2 \rfloor$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 3 / 21

# Perfect matchings and Hamilton cycles...



Perfect matching: matching of size  $\lfloor n/2 \rfloor$ 

 $\exists$  Hamilton cycle  $\Longrightarrow \exists$  Perfect matching

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 3 / 21

ls it true that

$$\begin{cases} \delta \ge 1 \quad \Rightarrow \ \exists \text{ perfect matching} \\ \delta \ge 2 \quad \Rightarrow \ \exists \text{ Hamilton cycle} \end{cases}$$
?

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 4 / 21

イロト イヨト イヨト イヨト

1

Is it true that 
$$\begin{cases} \delta \ge 1 \quad \Rightarrow \ \exists \text{ perfect matching} \\ \delta \ge 2 \quad \Rightarrow \ \exists \text{ Hamilton cycle} \end{cases}$$
?

Sometimes...

Theorem (Bollobás & Frieze '85):

In classical random graphs G(n, p) and G(n, m), it is a.a.s. true.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\begin{cases} \delta \ge 1 \quad \Rightarrow \ \exists \text{ perfect matching} \\ \delta \ge 2 \quad \Rightarrow \ \exists \text{ Hamilton cycle} \end{cases}$$
?

Sometimes...

Is it true that

Theorem (Bollobás & Frieze '85):

In classical random graphs G(n, p) and G(n, m), it is a.a.s. true.

Thm (Balogh, Bollobás & Walters + Krivelevich & Müller + P-G & Wormald '11):

Same for random geometric graphs.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 4 / 21

・ロト ・四ト ・ヨト ・ヨト

$$\begin{cases} \delta \ge 1 \quad \Rightarrow \ \exists \text{ perfect matching} \\ \delta \ge 2 \quad \Rightarrow \ \exists \text{ Hamilton cycle} \end{cases}$$
?

Sometimes...

Is it true that

Theorem (Bollobás & Frieze '85):

In classical random graphs G(n, p) and G(n, m), it is a.a.s. true.

Thm (Balogh, Bollobás & Walters + Krivelevich & Müller + P-G & Wormald '11):

Same for random geometric graphs.

... but not always!

Theorem (Robinson & Wormald '94):

For  $d \ge 3$ , a.a.s. random *d*-regular graphs have a Hamilton cycle. False for d = 2.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 4 / 21

イロト イポト イヨト イヨト

$$\begin{cases} \delta \ge 1 \quad \Rightarrow \ \exists \text{ perfect matching} \\ \delta \ge 2 \quad \Rightarrow \ \exists \text{ Hamilton cycle} \end{cases}$$
?

Sometimes...

Is it true that

Theorem (Bollobás & Frieze '85):

In classical random graphs G(n, p) and G(n, m), it is a.a.s. true.

Thm (Balogh, Bollobás & Walters + Krivelevich & Müller + P-G & Wormald '11):

Same for random geometric graphs.

... but not always!

Theorem (Robinson & Wormald '94):

For  $d \ge 3$ , a.a.s. random *d*-regular graphs have a Hamilton cycle. False for d = 2.

#### Theorem (Bohman & Frieze '09):

Same for random *m*-out graphs.

n vertices



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 5 / 21

イロト イポト イヨト イヨト

э

n vertices



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 5 / 21

<ロ> <問> < 回> < 回> < 回> < 回> < 回</p>

n vertices



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 5 / 21

・ 何・ ・ ヨ・ ・ ヨ・

590

n vertices



・ 戸 ト ・ 三 ト ・

글 > 글

Sac

n vertices



(loops and multiple edges allowed)

→ Ξ →

∃ ⊳

n vertices



(loops and multiple edges allowed)

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 5 / 21

→ Ξ →

∃ ⊳

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

• • = • •

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

▲冊 ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

→ Ξ →

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)

Preferential attachment rule:  $P(j \rightarrow i) \asymp \deg(i)$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

▲□ ▶ ▲ □ ▶ ▲ □ ▶

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)

Preferential attachment rule:  $P(j \rightarrow i) \asymp \deg(i)$ 

Rich get richer!



• = • •

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)

Preferential attachment rule:  $P(j \rightarrow i) \asymp \deg(i)$ 

#### Theorem (Bollobás, Riordan, Spencer & Tusnády '01):

For fixed  $m \in \mathbb{N}$ , a.a.s. PA(n, m) has a power-law degree distribution: For all  $k \leq n^{1/15}$ ,  $X_k \sim c_m k^{-2} n$ , where  $X_k$  is the number of vertices of degree at least k.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 6 / 21

PA(n, m): Yule '25; Barabási & Albert '99

*n* vertices, m = 3 (out-degree)

Preferential attachment rule:  $P(j \rightarrow i) \asymp deg(i)$ 

#### Theorem (Bollobás, Riordan, Spencer & Tusnády '01):

For fixed  $m \in \mathbb{N}$ , a.a.s. PA(n, m) has a power-law degree distribution: For all  $k \leq n^{1/15}$ ,  $X_k \sim c_m k^{-2} n$ , where  $X_k$  is the number of vertices of degree at least k.

#### Theorem (Bollobás & Riordan '04):

For  $m \ge 2$ , a.a.s. PA(n, m) is connected.

UA(n, m): Intermediate model between *m*-out and PA(n, m)

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 7 / 21

UA(n, m): Intermediate model between *m*-out and PA(n, m)

*n* vertices, m = 3 (out-degree)



A I > A = A A

UA(n, m): Intermediate model between *m*-out and PA(n, m)

*n* vertices, m = 3 (out-degree)

Uniform attachment rule:  $\forall i, i' \leq j$ ,  $\mathbf{P}(j \rightarrow i) = \mathbf{P}(j \rightarrow i')$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 7 / 21

→ @ ト → 注 ト → 注 - のへで

UA(n, m): Intermediate model between *m*-out and PA(n, m)

*n* vertices, m = 3 (out-degree)

Uniform attachment rule:  $\forall i, i' \leq j$ ,  $\mathsf{P}(j \to i) = \mathsf{P}(j \to i')$ 

Old get slightly richer!



#### Main results:

#### Theorem:

- For  $m \ge 159$ , a.a.s. UA(n, m) has a perfect matching.
- For  $m \ge 3,214$ , a.a.s. UA(n, m) has a Hamilton cycle.
- For  $m \ge 1,260$ , a.a.s. PA(n, m) has a perfect matching.
- For  $m \ge 29,500$ , a.a.s. PA(n, m) has a Hamilton cycle.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

# Main results:

## Theorem:

- For  $m \ge 159$ , a.a.s. UA(n, m) has a perfect matching.
- For  $m \ge 3,214$ , a.a.s. UA(n, m) has a Hamilton cycle.
- For  $m \ge 1,260$ , a.a.s. PA(n, m) has a perfect matching.
- For  $m \ge 29,500$ , a.a.s. PA(n, m) has a Hamilton cycle.

Theorem (Bonato, McRury, Nicolaidis, Ternovsky, P-G, Prałat & del Río-Chanona '15):

For m = 2, a.a.s. PA(n, m) has no Hamilton cycle.

イロト イポト イヨト イヨト

# Main results:

## Theorem:

- For  $m \ge 159$ , a.a.s. UA(n, m) has a perfect matching.
- For  $m \ge 3,214$ , a.a.s. UA(n, m) has a Hamilton cycle.
- For  $m \ge 1,260$ , a.a.s. PA(n, m) has a perfect matching.
- For  $m \ge 29,500$ , a.a.s. PA(n, m) has a Hamilton cycle.

Theorem (Bonato, McRury, Nicolaidis, Ternovsky, P-G, Prałat & del Río-Chanona '15):

For m = 2, a.a.s. PA(n, m) has no Hamilton cycle.

## Theorem:

- For m = 2, a.a.s. PA(n, m) has no perfect matching.
- For m = 2, a.a.s. UA(n, m) has no Hamilton cycle.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 8 / 21

イロト イポト イヨト イヨト

Sac

3

 $\mathsf{UA}(n,m), \quad m = m_1 + m_2$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 9 / 21

・ロト ・ 日 ・ ・ ヨ ・ ・

DQC

프 > 프



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 9 / 21

∃ ⊳



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 9 / 21

イロト イポト イヨト イヨト



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 9 / 21

# 2-round exposure: $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 10 / 21

イロト 不得下 イヨト イヨト 二日

Sac

2-round exposure:  $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$ 

First round —  $UA(n, m_1)$ :

 $UA(n, m_1)$  a.a.s.:

- $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion),
- longest path has length  $L \ge (1 \epsilon/2)n$ .

Still true if we add edges!

2-round exposure:  $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$ 

First round —  $UA(n, m_1)$ :

 $UA(n, m_1)$  a.a.s.:

- $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion),
- longest path has length  $L \ge (1 \epsilon/2)n$ .

Still true if we add edges!

L(G) =length of a longest path in G.

2-round exposure:  $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$ 

First round —  $UA(n, m_1)$ :

 $UA(n, m_1)$  a.a.s.:

- $\forall K \text{ s.t. } |K| \leq 2\epsilon n, |N(K)| \geq 2|K|$  (expansion),
- longest path has length  $L \ge (1 \epsilon/2)n$ .

Still true if we add edges!

L(G) =length of a longest path in G.

Second round — add some edges of  $UA(n, m_2)$ :

- We build sequence  $\mathsf{UA}(n,m_1)=\mathsf{G}_0\subset\mathsf{G}_1\subset\mathsf{G}_2\subset\cdots\subset\mathsf{G}_{\epsilon n}.$
- $G_i$  "improves"  $G_{i-1}$  if  $L(G_i) > L(G_{i-1})$  or  $G_i$  contains HC.
- We show: for  $1 \le i \le \epsilon n$ ,  $\mathsf{P}(G_i \text{ improves } G_{i-1}) \ge 3/4$ .
- A.a.s. there are at least  $(\epsilon/2)n$  improving steps, so we win!

イロト イポト イヨト イヨト

Sar

# Expansion properties

N(S) is the strict neighbourhood of S. (Contains vertices not in S but adjacent to some vertex in S.)



4 E > 4

# Expansion properties

N(S) is the strict neighbourhood of S. (Contains vertices not in S but adjacent to some vertex in S.)



#### Lemma:

Let  $\alpha \in (0, 1)$ . If  $m = m(\alpha)$  is large enough, then a.a.s. every set of vertices K with  $|K| \le \alpha n$  satisfies  $|N(K)| \ge 2|K|$ .

・ 何 ト ・ ヨ ト ・ ヨ ト

# Expansion properties

N(S) is the strict neighbourhood of S. (Contains vertices not in S but adjacent to some vertex in S.)



#### Lemma:

Let  $\alpha \in (0, 1)$ . If  $m = m(\alpha)$  is large enough, then a.a.s. every set of vertices K with  $|K| \le \alpha n$  satisfies  $|N(K)| \ge 2|K|$ .

We will use:  $|N(K)| \ge |K|$  for perfect matchings, and  $|N(K)| \ge 2|K|$  for Hamilton cycles.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 11 / 21

\* @ ト \* ヨ ト \* ヨ

## Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

メポト イラト イラト 一日

## Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

(i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.

(ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 12 / 21

▲□ ▶ ▲ □ ▶ ▲ □ ▶

## Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

(i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.

(ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 12 / 21

<個ト < 回ト < 回ト = 回

## Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

(i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.

(ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.



・ 日 ・ ・ ヨ ・

## Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

(i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.

(ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.



● ▶ ★ ● ▶ ★ ●

#### Lemma:

If  $m = m(\epsilon)$  is large enough, then a.a.s.

(i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.

(ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.



## Proof (First moment method):

 $P(\exists \text{ independent sets of size } \epsilon n) \leq E(\# \text{ of such sets}) = o(1).$ 

Same for large pairs of sets with no edges across.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 12 / 21

メ 伊 ト メ ヨ ト メ

- If  $m = m(\epsilon)$  is large enough, then a.a.s.
  - (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

イロト イポト イヨト イヨト

If  $m = m(\epsilon)$  is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

## Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ 何 ト ・ ヨ ト ・ ヨ ト

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

## Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ 同・ ・ ヨ・・・

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 伊 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

## Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ 同・ ・ ヨ・・・

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If  $m = m(\epsilon)$  is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary (i) $\Rightarrow \exists$ matching of size at least $(1 - \epsilon)n/2$ . (ii) $\Rightarrow \exists$ path of length at least $(1 - 2\epsilon)n$ . B C

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ コ ト ・ 日 ト ・ 日 ト ・

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 「 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

## Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ 同・ ・ ヨ・・・

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

# Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .

・ 「 ト ・ ヨ ト ・ ヨ ト

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

If 
$$m = m(\epsilon)$$
 is large enough, then a.a.s.

- (i) All sets of vertices A with  $|A| \ge \epsilon n$  induce some edges.
- (ii) All disjoint pairs B, C with  $|B|, |C| \ge \epsilon n$  induce edges across.

## Corollary

(i) 
$$\Rightarrow \exists$$
 matching of size at least  $(1 - \epsilon)n/2$ .

(ii) 
$$\Rightarrow \exists$$
 path of length at least  $(1 - 2\epsilon)n$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 13 / 21

・ 同・ ・ ヨ・・・

2-round exposure:  $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$ 

First round —  $UA(n, m_1)$ :

 $UA(n, m_1)$  a.a.s.:

- $\forall K \text{ s.t. } |K| \leq 2\epsilon n, |N(K)| \geq 2|K|$  (expansion),
- longest path has length  $L \ge (1 \epsilon/2)n$ .

Still true if we add edges!

L(G) =length of a longest path in G.

Second round — add some edges of  $UA(n, m_2)$ :

- We build sequence  $\mathsf{UA}(n,m_1)=\mathsf{G}_0\subset\mathsf{G}_1\subset\mathsf{G}_2\subset\cdots\subset\mathsf{G}_{\epsilon n}.$
- $G_i$  "improves"  $G_{i-1}$  if  $L(G_i) > L(G_{i-1})$  or  $G_i$  contains HC.
- We show: for  $1 \le i \le \epsilon n$ ,  $P(G_i \text{ improves } G_{i-1}) \ge 3/4$ .
- A.a.s. there are at least  $(\epsilon/2)n$  improving steps, so we win!

イロト イポト イヨト イヨト

Sac

## Definition:

Given graph G,  $A = \{v : v \text{ is an end of a longest path of } G\}$ Given  $v \in A$ ,  $B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w\}$ 

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 15 / 21

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

## Definition:

```
Given graph G,

A = \{v : v \text{ is an end of a longest path of } G\}

Given v \in A,

B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w\}
```

#### Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between  $v \in A$  and B(v), then we either increase the length of a longest path or create a Hamilton cycle.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 15 / 21

・ 伺 ト ・ ヨ ト ・ ヨ ト

## Definition:

Given graph G,  

$$A = \{v : v \text{ is an end of a longest path of } G\}$$
  
Given  $v \in A$ ,  
 $B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w$ 

#### Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between  $v \in A$  and B(v), then we either increase the length of a longest path or create a Hamilton cycle.



```
Given graph G,

A = \{v : v \text{ is an end of a longest path of } G\}

Given v \in A,

B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w\}
```

#### Lemma:



Given graph G,  

$$A = \{v : v \text{ is an end of a longest path of } G\}$$
  
Given  $v \in A$ ,  
 $B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w$ 

#### Lemma:



Given graph G,  

$$A = \{v : v \text{ is an end of a longest path of } G\}$$
  
Given  $v \in A$ ,  
 $B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w$ 

#### Lemma:



Given graph G,  

$$A = \{v : v \text{ is an end of a longest path of } G\}$$
  
Given  $v \in A$ ,  
 $B(v) = \{w \neq v : \exists \text{ longest path } P \text{ with ends } v, w$ 

#### Lemma:





Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 16 / 21

-

э



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 16 / 21

→ Ξ →









 $END(P, a) = \{possible ends of (P, a) after sequence of rotations\}$ 

#### Lemma:

Let P be a longest path of a graph G and a one of its ends. Then, |N(END(P, a))| < 2|END(P, a))|.

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 17 / 21

Image: A Image: A

#### Lemma:

Let P be a longest path of a graph G and a one of its ends. Then, |N(END(P, a))| < 2|END(P, a))|.

Proof:

- $N(END(P, a)) \subseteq V(P)$  (since P is a longest path)
- If w ∈ N(END(P, a)) then w is adjacent in P to some vertex in END(P, a)
- So  $|N(END(P, a))| \le 2|END(P, a))| 1$ .

・得下 ・ヨト ・ヨト ・ヨ

2-round exposure:  $UA(n, m) = UA(n, m_1) \cup UA(n, m_2)$ 

First round —  $UA(n, m_1)$ :

 $UA(n, m_1)$  a.a.s.:

- $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion),
- longest path has length  $L \ge (1 \epsilon/2)n$ .

Still true if we add edges!

L(G) =length of a longest path in G.

Second round — add some edges of  $UA(n, m_2)$ :

- We build sequence  $\mathsf{UA}(n,m_1)=\mathsf{G}_0\subset\mathsf{G}_1\subset\mathsf{G}_2\subset\cdots\subset\mathsf{G}_{\epsilon n}.$
- $G_i$  "improves"  $G_{i-1}$  if  $L(G_i) > L(G_{i-1})$  or  $G_i$  contains HC.
- We show: for  $1 \le i \le \epsilon n$ ,  $\mathsf{P}(G_i \text{ improves } G_{i-1}) \ge 3/4$ .
- A.a.s. there are at least  $(\epsilon/2)n$  improving steps, so we win!

イロト イポト イヨト イヨト

Sar

#### Recall:

Sequence  $UA(n, m_1) = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_{\epsilon n}$ . For each  $G_i$ :  $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion).

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 19 / 21

#### Recall:

Sequence 
$$UA(n, m_1) = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_{\epsilon n}$$
.  
For each  $G_i$ :  $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion).

| Lemma:                          |                       |     |                     |                            |
|---------------------------------|-----------------------|-----|---------------------|----------------------------|
| For each <i>G<sub>i</sub></i> : | $ A  \ge 2\epsilon n$ | and | $\forall v \in A$ , | $ B(v)  \geq 2\epsilon n.$ |

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 19 / 21

イロト イポト イヨト イヨト

€ 990

#### Recall:

Sequence  $UA(n, m_1) = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_{\epsilon n}$ . For each  $G_i$ :  $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion).

| Lemma:                          |                       |     |                     |                            |
|---------------------------------|-----------------------|-----|---------------------|----------------------------|
| For each <i>G<sub>i</sub></i> : | $ A  \ge 2\epsilon n$ | and | $\forall v \in A$ , | $ B(v)  \geq 2\epsilon n.$ |

## Proof:

Let P be a longest path and v one of its ends.

- |N(END(P, v))| < 2|END(P, v)|,
- $\mathsf{END}(P, v) \subseteq B(v) \subseteq A$ . So  $|A| \ge |B(v)| \ge |\mathsf{END}(P, v)| > 2\epsilon n$ .

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 19 / 21

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Recall:

Sequence  $UA(n, m_1) = G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_{\epsilon n}$ . For each  $G_i$ :  $\forall K \text{ s.t. } |K| \leq 2\epsilon n$ ,  $|N(K)| \geq 2|K|$  (expansion).

| Lemma:                          |                       |     |                     |                            |
|---------------------------------|-----------------------|-----|---------------------|----------------------------|
| For each <i>G<sub>i</sub></i> : | $ A  \ge 2\epsilon n$ | and | $\forall v \in A$ , | $ B(v)  \geq 2\epsilon n.$ |

## Proof:

Let P be a longest path and v one of its ends.

• 
$$|N(END(P, v))| < 2|END(P, v)|$$
,

• 
$$\mathsf{END}(P, v) \subseteq B(v) \subseteq A$$
.  
So  $|A| \ge |B(v)| \ge |\mathsf{END}(P, v)| > 2\epsilon n$ .



For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices.
   Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .

イロト イポト イヨト イヨト

For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices. Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .



イロト イポト イヨト イヨト 二日

For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices. Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 20 / 21

イロト イポト イヨト イヨト 二日

For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices. Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 20 / 21

(4 伊下) 4 戸下 4 戸下

For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices. Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .



Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 20 / 21

For each  $0 \le i \le \epsilon n - 1$ :

- Consider G<sub>i</sub>. (Update A, etc.)
- Pick youngest unmarked  $v \in A$ , and mark it.
- Expose edges in UA(n, m<sub>1</sub>) from v to older vertices. Add them to G<sub>i</sub> to form G<sub>i+1</sub>
- If there are edges between v and B(v), then  $G_{i+1}$  improves  $G_i$ .

We have:  $\mathsf{P}(G_{i+1} \text{ improves } G_i) \geq 1 - (1-\epsilon)^{m_2} > 3/4.$ 

# Thank you

Frieze, P-G, Prałat, Reiniger Perfect matchings and Hamiltonian cycles in the PA model AMS Fall 2016 21 / 21

イロト イヨト イヨト イヨト

€ 990