Perfect matchings and Hamiltonian cycles in the preferential attachment model

Xavier Pérez-Giménez
joint work with

Alan Frieze ${ }^{\dagger}$, Paweł Prałat* and Benjamin Reiniger ${ }^{\ddagger}$

Carnegie
Mellon
University
UNIVERSITY

AMS Sectional Meeting, University of St. Thomas, Minneapolis, October 2016

Some notation

n vertices, for $n \rightarrow \infty$

Definition

Event E_{n} holds a.a.s. (asymptotically almost surely) if

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(E_{n}\right)=1
$$

Perfect matchings and Hamilton cycles. . .

Perfect matching

Hamilton cycle

Perfect matchings and Hamilton cycles. . .

Perfect matching

Hamilton cycle

Perfect matching: matching of size $\lfloor n / 2\rfloor$

Perfect matchings and Hamilton cycles. . .

Perfect matching

Hamilton cycle

Perfect matching: matching of size $\lfloor n / 2\rfloor$
\exists Hamilton cycle $\Longrightarrow \exists$ Perfect matching
in random graphs.
Is it true that $\begin{cases}\delta \geq 1 & \Rightarrow \exists \text { perfect matching } \\ \delta \geq 2 & \Rightarrow \exists \text { Hamilton cycle }\end{cases}$
in random graphs.
Is it true that $\left\{\begin{array}{ll}\delta \geq 1 & \Rightarrow \exists \text { perfect matching } \\ \delta \geq 2 & \Rightarrow \exists \text { Hamilton cycle }\end{array} ?\right.$
Sometimes...
Theorem (Bollobás \& Frieze '85):
In classical random graphs $G(n, p)$ and $G(n, m)$, it is a.a.s. true.
in random graphs.
Is it true that $\left\{\begin{array}{ll}\delta \geq 1 & \Rightarrow \exists \text { perfect matching } \\ \delta \geq 2 & \Rightarrow \exists \text { Hamilton cycle }\end{array} ?\right.$ Sometimes...

Theorem (Bollobás \& Frieze '85):
In classical random graphs $G(n, p)$ and $G(n, m)$, it is a.a.s. true.
Thm (Balogh, Bollobás \& Walters + Krivelevich \& Müller + P-G \& Wormald '11):
Same for random geometric graphs.

in random graphs.

Is it true that $\left\{\begin{aligned} \delta \geq 1 & \Rightarrow \exists \text { perfect matching } \\ \delta \geq 2 & \Rightarrow \exists \text { Hamilton cycle }\end{aligned}\right.$?
Sometimes...
Theorem (Bollobás \& Frieze '85):
In classical random graphs $G(n, p)$ and $G(n, m)$, it is a.a.s. true.
Thm (Balogh, Bollobás \& Walters + Krivelevich \& Müller + P-G \& Wormald '11):
Same for random geometric graphs.
... but not always!

Theorem (Robinson \& Wormald '94):

For $d \geq 3$, a.a.s. random d-regular graphs have a Hamilton cycle. False for $d=2$.

in random graphs.

Is it true that $\quad\left\{\begin{aligned} \delta \geq 1 & \Rightarrow \exists \text { perfect matching } \\ \delta \geq 2 & \Rightarrow \exists \text { Hamilton cycle }\end{aligned} ?\right.$
Sometimes...
Theorem (Bollobás \& Frieze '85):
In classical random graphs $G(n, p)$ and $G(n, m)$, it is a.a.s. true.

Thm (Balogh, Bollobás \& Walters + Krivelevich \& Müller + P-G \& Wormald '11):
Same for random geometric graphs.
... but not always!

Theorem (Robinson \& Wormald '94):

For $d \geq 3$, a.a.s. random d-regular graphs have a Hamilton cycle. False for $d=2$.

Theorem (Bohman \& Frieze '09):

Same for random m-out graphs.

m-out model:

$$
m=3 \text { (out-degree) }
$$

n vertices

m-out model:

$m=3$ (out-degree)
n vertices

m-out model:

$$
m=3 \text { (out-degree) }
$$

n vertices

m-out model:

$$
m=3 \text { (out-degree) }
$$

n vertices

$$
m=3 \text { (out-degree) }
$$

n vertices

(loops and multiple edges allowed)

$$
m=3 \text { (out-degree) }
$$

n vertices

(loops and multiple edges allowed)

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA (n, m) : Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment rule: $\quad \mathbf{P}(j \rightarrow i) \asymp \operatorname{deg}(i)$

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment rule: $\quad \mathbf{P}(j \rightarrow i) \asymp \operatorname{deg}(i)$
Rich get richer!

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment rule: $\quad \mathbf{P}(j \rightarrow i) \asymp \operatorname{deg}(i)$
Theorem (Bollobás, Riordan, Spencer \& Tusnády '01):
For fixed $m \in \mathbb{N}$, a.a.s. $\operatorname{PA}(n, m)$ has a power-law degree distribution: For all $k \leq n^{1 / 15}, \quad X_{k} \sim c_{m} k^{-2} n$, where X_{k} is the number of vertices of degree at least k.

Preferential attachment:

PA(n, m): Yule '25; Barabási \& Albert '99
n vertices, $m=3$ (out-degree)

Preferential attachment rule: $\quad \mathrm{P}(j \rightarrow i) \asymp \operatorname{deg}(i)$

Theorem (Bollobás, Riordan, Spencer \& Tusnády '01):

For fixed $m \in \mathbb{N}$, a.a.s. $\operatorname{PA}(n, m)$ has a power-law degree distribution: For all $k \leq n^{1 / 15}, \quad X_{k} \sim c_{m} k^{-2} n$, where X_{k} is the number of vertices of degree at least k.

Theorem (Bollobás \& Riordan '04):

For $m \geq 2$, a.a.s. $\operatorname{PA}(n, m)$ is connected.

Uniform attachment:

$\mathrm{UA}(n, m)$: Intermediate model between m-out and $\mathrm{PA}(n, m)$

Uniform attachment:

UA (n, m) : Intermediate model between m-out and $\operatorname{PA}(n, m)$
n vertices, $m=3$ (out-degree)

Uniform attachment:

$\mathrm{UA}(n, m)$: Intermediate model between m-out and $\mathrm{PA}(n, m)$
n vertices, $m=3$ (out-degree)

Uniform attachment rule:

$$
\forall i, i^{\prime} \leq j, \quad \mathbf{P}(j \rightarrow i)=\mathbf{P}\left(j \rightarrow i^{\prime}\right)
$$

Uniform attachment:

$\mathrm{UA}(n, m)$: Intermediate model between m-out and $\mathrm{PA}(n, m)$
n vertices, $m=3$ (out-degree)

Uniform attachment rule: $\quad \forall i, i^{\prime} \leq j, \quad \mathbf{P}(j \rightarrow i)=\mathbf{P}\left(j \rightarrow i^{\prime}\right)$
Old get slightly richer!

Main results:

Theorem:

- For $m \geq 159$, a.a.s. $\mathrm{UA}(n, m)$ has a perfect matching.
- For $m \geq 3,214$, a.a.s. UA (n, m) has a Hamilton cycle.
- For $m \geq 1,260$, a.a.s. $\operatorname{PA}(n, m)$ has a perfect matching.
- For $m \geq 29,500$, a.a.s. $\mathrm{PA}(n, m)$ has a Hamilton cycle.

Main results:

Theorem:

- For $m \geq 159$, a.a.s. $\mathrm{UA}(n, m)$ has a perfect matching.
- For $m \geq 3,214$, a.a.s. UA (n, m) has a Hamilton cycle.
- For $m \geq 1,260$, a.a.s. $\operatorname{PA}(n, m)$ has a perfect matching.
- For $m \geq 29,500$, a.a.s. $\mathrm{PA}(n, m)$ has a Hamilton cycle.

Theorem (Bonato, McRury, Nicolaidis, Ternovsky, P-G, Prałat \& del Río-Chanona '15):
For $m=2$, a.a.s. $\operatorname{PA}(n, m)$ has no Hamilton cycle.

Main results:

Theorem:

- For $m \geq 159$, a.a.s. $\mathrm{UA}(n, m)$ has a perfect matching.
- For $m \geq 3,214$, a.a.s. UA (n, m) has a Hamilton cycle.
- For $m \geq 1,260$, a.a.s. $\operatorname{PA}(n, m)$ has a perfect matching.
- For $m \geq 29,500$, a.a.s. $\mathrm{PA}(n, m)$ has a Hamilton cycle.

Theorem (Bonato, McRury, Nicolaidis, Ternovsky, P-G, Prałat \& del Río-Chanona '15):
For $m=2$, a.a.s. $\operatorname{PA}(n, m)$ has no Hamilton cycle.

Theorem:

- For $m=2$, a.a.s. $\operatorname{PA}(n, m)$ has no perfect matching.
- For $m=2$, a.a.s. UA (n, m) has no Hamilton cycle.

Two-round exposure:
$\mathrm{UA}(n, m), \quad m=m_{1}+m_{2}$

Two-round exposure:

Two-round exposure:

Two-round exposure:

$$
\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \cup \mathrm{A}\left(n, m_{2}\right) \quad \text { (independent) }
$$

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \cup \mathrm{A}\left(n, m_{2}\right)$

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \cup \mathrm{A}\left(n, m_{2}\right)$

First round - UA $\left(n, m_{1}\right)$:

$\mathrm{UA}\left(n, m_{1}\right)$ a.a.s.:

- $\forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion),
- longest path has length $L \geq(1-\epsilon / 2) n$.

Still true if we add edges!

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \cup \mathrm{A}\left(n, m_{2}\right)$

First round - UA $\left(n, m_{1}\right)$:

$\mathrm{UA}\left(n, m_{1}\right)$ a.a.s.:

- $\forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion),
- longest path has length $L \geq(1-\epsilon / 2) n$.

Still true if we add edges!
$L(G)=$ length of a longest path in G.

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \mathrm{UA}\left(n, m_{2}\right)$
First round - UA $\left(n, m_{1}\right)$:
$\mathrm{UA}\left(n, m_{1}\right)$ a.a.s.:

- $\forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion),
- longest path has length $L \geq(1-\epsilon / 2) n$.

Still true if we add edges!
$L(G)=$ length of a longest path in G.
Second round - add some edges of UA $\left(n, m_{2}\right)$:

- We build sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$.
- G_{i} "improves" G_{i-1} if $L\left(G_{i}\right)>L\left(G_{i-1}\right)$ or G_{i} contains HC.
- We show: for $1 \leq i \leq \epsilon n, \quad \mathbf{P}\left(G_{i}\right.$ improves $\left.G_{i-1}\right) \geq 3 / 4$.
- A.a.s. there are at least $(\epsilon / 2) n$ improving steps, so we win!

Expansion properties

$N(S)$ is the strict neighbourhood of S.
(Contains vertices not in S but adjacent to some vertex in S.)

$$
N(S)
$$

Expansion properties

$N(S)$ is the strict neighbourhood of S.
(Contains vertices not in S but adjacent to some vertex in S.)

Lemma:

Let $\alpha \in(0,1)$. If $m=m(\alpha)$ is large enough, then a.a.s. every set of vertices K with $|K| \leq \alpha n$ satisfies $|N(K)| \geq 2|K|$.

Expansion properties

$N(S)$ is the strict neighbourhood of S.
(Contains vertices not in S but adjacent to some vertex in S.)

Lemma:

Let $\alpha \in(0,1)$. If $m=m(\alpha)$ is large enough, then a.a.s. every set of vertices K with $|K| \leq \alpha n$ satisfies $|N(K)| \geq 2|K|$.

We will use:
$|N(K)| \geq|K|$ for perfect matchings, and
$|N(K)| \geq 2|K|$ for Hamilton cycles.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Proof (First moment method):

$\mathbf{P}(\exists$ independent sets of size $\epsilon n) \leq \mathbf{E}(\#$ of such sets $)=o(1)$.
Same for large pairs of sets with no edges across.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Density properties (continued)

Lemma:

If $m=m(\epsilon)$ is large enough, then a.a.s.
(i) All sets of vertices A with $|A| \geq \epsilon n$ induce some edges.
(ii) All disjoint pairs B, C with $|B|,|C| \geq \epsilon n$ induce edges across.

Corollary

(i) $\Rightarrow \exists$ matching of size at least $(1-\epsilon) n / 2$.
(ii) $\Rightarrow \exists$ path of length at least $(1-2 \epsilon) n$.

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \mathrm{UA}\left(n, m_{2}\right)$
First round - UA $\left(n, m_{1}\right)$:
$\mathrm{UA}\left(n, m_{1}\right)$ a.a.s.:

- $\forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion),
- longest path has length $L \geq(1-\epsilon / 2) n$.

Still true if we add edges!
$L(G)=$ length of a longest path in G.
Second round - add some edges of UA $\left(n, m_{2}\right)$:

- We build sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$.
- G_{i} "improves" G_{i-1} if $L\left(G_{i}\right)>L\left(G_{i-1}\right)$ or G_{i} contains HC.
- We show: for $1 \leq i \leq \epsilon n, \quad \mathbf{P}\left(G_{i}\right.$ improves $\left.G_{i-1}\right) \geq 3 / 4$.
- A.a.s. there are at least $(\epsilon / 2) n$ improving steps, so we win!

Building Hamilton cycles: Longest paths

Definition:

Given graph G, $A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Longest paths

Definition:

Given graph G,
$A=\{v: v$ is an end of a longest path of $G\}$
Given $v \in A$, $B(v)=\{w \neq v: \exists$ longest path P with ends $v, w\}$

Lemma:

Suppose G is connected and does not have a Hamilton cycle. If we add an edge between $v \in A$ and $B(v)$, then we either increase the length of a longest path or create a Hamilton cycle.

Building Hamilton cycles: Pósa's rotations

Building Hamilton cycles: Pósa's rotations

$\operatorname{rotation}(P, a) \rightarrow\left(P^{\prime}, a\right)$

Building Hamilton cycles: Pósa's rotations

rotation $(P, a) \rightarrow\left(P^{\prime}, a\right)$

$a \quad b$

Building Hamilton cycles: Pósa's rotations

rotation $(P, a) \rightarrow\left(P^{\prime}, a\right)$

a

Building Hamilton cycles: Pósa's rotations

rotation $(P, a) \rightarrow\left(P^{\prime}, a\right)$

[^0]
Building Hamilton cycles: Pósa's rotations

rotation $(P, a) \rightarrow\left(P^{\prime}, a\right)$

a

$\operatorname{END}(P, a)=$ \{possible ends of (P, a) after sequence of rotations $\}$

Building Hamilton cycles: Longest paths

Lemma:
Let P be a longest path of a graph G and a one of its ends. Then, $|N(\operatorname{END}(P, a))|<2 \mid \operatorname{END}(P, a)) \mid$.

Building Hamilton cycles: Longest paths

Lemma:
Let P be a longest path of a graph G and a one of its ends. Then, $|N(\operatorname{END}(P, a))|<2 \mid \operatorname{END}(P, a)) \mid$.

Proof:

- $N(\operatorname{END}(P, a)) \subseteq V(P)$ (since P is a longest path)
- If $w \in N(\operatorname{END}(P, a))$ then w is adjacent in P to some vertex in $\operatorname{END}(P, a)$
- So $|N(\operatorname{END}(P, a))| \leq 2 \mid \operatorname{END}(P, a)) \mid-1$.

Building Hamilton cycles:

2-round exposure: $\mathrm{UA}(n, m)=\mathrm{UA}\left(n, m_{1}\right) \cup \mathrm{UA}\left(n, m_{2}\right)$
First round - UA $\left(n, m_{1}\right)$:
$\mathrm{UA}\left(n, m_{1}\right)$ a.a.s.:

- $\forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion),
- longest path has length $L \geq(1-\epsilon / 2) n$.

Still true if we add edges!
$L(G)=$ length of a longest path in G.
Second round - add some edges of UA $\left(n, m_{2}\right)$:

- We build sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$.
- G_{i} "improves" G_{i-1} if $L\left(G_{i}\right)>L\left(G_{i-1}\right)$ or G_{i} contains HC.
- We show: for $1 \leq i \leq \epsilon n, \quad \mathbf{P}\left(G_{i}\right.$ improves $\left.G_{i-1}\right) \geq 3 / 4$.
- A.a.s. there are at least $(\epsilon / 2) n$ improving steps, so we win!

Building Hamilton cycles:

Recall:

Sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$. For each $G_{i}: \quad \forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion).

Building Hamilton cycles:

Recall:

Sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$. For each $G_{i}: \quad \forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion).

Lemma:

For each $G_{i}: \quad|A| \geq 2 \epsilon n \quad$ and $\quad \forall v \in A, \quad|B(v)| \geq 2 \epsilon n$.

Building Hamilton cycles:

Recall:

Sequence $\operatorname{UA}\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$. For each $G_{i}: \quad \forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion).

Lemma:

For each $G_{i}: \quad|A| \geq 2 \epsilon n \quad$ and $\quad \forall v \in A, \quad|B(v)| \geq 2 \epsilon n$.
Proof:
Let P be a longest path and v one of its ends.

- $|N(E N D(P, v))|<2|\operatorname{END}(P, v)|$,
- $\operatorname{END}(P, v) \subseteq B(v) \subseteq A$. So $|A| \geq|B(v)| \geq|\operatorname{END}(P, v)|>2 \epsilon n$.

Building Hamilton cycles:

Recall:

Sequence $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$. For each $G_{i}: \quad \forall K$ s.t. $|K| \leq 2 \epsilon n, \quad|N(K)| \geq 2|K| \quad$ (expansion).

Lemma:

For each $G_{i}: \quad|A| \geq 2 \epsilon n \quad$ and $\quad \forall v \in A, \quad|B(v)| \geq 2 \epsilon n$.

Proof:

Let P be a longest path and v one of its ends.

- $|N(E N D(P, v))|<2|\operatorname{END}(P, v)|$,
- $\operatorname{END}(P, v) \subseteq B(v) \subseteq A$. So $|A| \geq|B(v)| \geq|\operatorname{END}(P, v)|>2 \epsilon n$.

Recall:

Adding an edge between $v \in A$ and $w \in B(v)$ will improve G_{i}.

Building Hamilton cycles:

Construction of UA $\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$
For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

Building Hamilton cycles:

Construction of $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$
For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

Building Hamilton cycles:

Construction of $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$

For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

Building Hamilton cycles:

Construction of $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$
For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

$$
|B(v)| \geq 2 \epsilon n \quad|A| \geq 2 \epsilon n
$$

Building Hamilton cycles:

Construction of $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$
For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

Building Hamilton cycles:

Construction of $U A\left(n, m_{1}\right)=G_{0} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{\epsilon n}$
For each $0 \leq i \leq \epsilon n-1$:

- Consider G_{i}. (Update A, etc.)
- Pick youngest unmarked $v \in A$, and mark it.
- Expose edges in UA $\left(n, m_{1}\right)$ from v to older vertices.

Add them to G_{i} to form G_{i+1}

- If there are edges between v and $B(v)$, then G_{i+1} improves G_{i}.

We have: $\mathrm{P}\left(G_{i+1}\right.$ improves $\left.G_{i}\right) \geq 1-(1-\epsilon)^{m_{2}}>3 / 4$.

Thank you

[^0]: a

