Arboricity and spanning-tree packing in random graphs with an application to load balancing

Xavier Pérez-Giménez ${ }^{\dagger}$
joint work with
Jane (Pu) Gao* and Cristiane M. Sato ${ }^{\dagger}$
\dagger University of Waterloo UNIVERSITY OFo
* University of Toronto TORONTO
Iowa State University, February 2014

Motivation

Spanning-tree packing (STP) number

Definition

$T(G)=$ maximum number of edge-disjoint spanning trees in G.

Example

$$
T(G)=2 .
$$

Trivial upper bound
$T(G) \leq \min \left\{\delta,\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right\}, \quad$ where $\quad \frac{\bar{d}}{2}=\frac{m}{n-1}$.

An application

Measure of network strength/vulnerability.

Spanning-tree packing (STP) number

Definition

$T(G)=$ maximum number of edge-disjoint spanning trees in G.

$$
\begin{aligned}
& \text { Example } \\
& T(G)=2 .
\end{aligned}
$$

Trivial upper bound
$T(G) \leq \min \left\{\delta,\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right\}, \quad$ where $\quad \frac{\bar{d}}{2}=\frac{m}{n-1}$.

An application
Measure of network strength/vulnerability.

Spanning-tree packing (STP) number

Definition

$T(G)=$ maximum number of edge-disjoint spanning trees in G.

$$
\begin{aligned}
& \text { Example } \\
& T(G)=2 .
\end{aligned}
$$

Trivial upper bound
$T(G) \leq \min \left\{\delta,\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right\}, \quad$ where $\quad \frac{\bar{d}}{2}=\frac{m}{n-1}$.

An application

Measure of network strength/vulnerability.

Spanning-tree packing (STP) number

Definition

$T(G)=$ maximum number of edge-disjoint spanning trees in G.

$$
\begin{aligned}
& \text { Example } \\
& T(G)=2 .
\end{aligned}
$$

Trivial upper bound
$T(G) \leq \min \left\{\delta,\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right\}, \quad$ where $\quad \frac{\bar{d}}{2}=\frac{m}{n-1}$.

An application
Measure of network strength/vulnerability.

Arboricity

Definition

$A(G)=$ minimum number of spanning trees covering all edges of G;
$=$ minimum number of forests decomposing $E(G)$.

Example

$$
A(G)=3 .
$$

Trivial lower bound

$$
A(G) \geq\left\lceil\frac{\bar{d}}{2}\right\rceil, \quad \text { where } \quad \frac{\bar{d}}{2}=\frac{m}{n-1}
$$

Some applications

Measure of density of subgraphs; k-orientability; load balancing.

Arboricity

Definition

$A(G)=$ minimum number of spanning trees covering all edges of G; $=$ minimum number of forests decomposing $E(G)$.

$$
\begin{aligned}
& \text { Example } \\
& A(G)=3
\end{aligned}
$$

Trivial lower bound

$$
A(G) \geq\left\lceil\frac{\bar{d}}{2}\right\rceil, \quad \text { where } \quad \frac{\bar{d}}{2}=\frac{m}{n-1}
$$

Some applications

Measure of density of subgraphs; k-orientability; load balancing.

Arboricity

Definition

$A(G)=$ minimum number of spanning trees covering all edges of G; $=$ minimum number of forests decomposing $E(G)$.

$$
\begin{aligned}
& \text { Example } \\
& A(G)=3
\end{aligned}
$$

Trivial lower bound

$$
A(G) \geq\left\lceil\frac{\bar{d}}{2}\right\rceil, \quad \text { where } \quad \frac{\bar{d}}{2}=\frac{m}{n-1}
$$

Some applications

Measure of density of subgraphs; k-orientability; load balancing.

k-orientability and load balancing

arboricity

"density" of densest subgraph

k-orientability and load balancing

k-orientability and load balancing

arboricity

"density" of densest subgraph
Nash-Williams'64

Problem and previous results

Theorem (Palmer, Spencer '95)
$T(\mathscr{G}(n, p))=\delta$ a.a.s., for δ constant $(p \sim \log n / n)$.

Theorem (Catlin, Chen, Palmer '93)

$$
\left\{T(\mathscr{G}(n, p))=\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right.
$$

$$
\text { a.a.s., } \quad \text { for } p=C(\log n / n)^{1 / 3} \text {. }
$$

Theorem (Chen, Li, Lian '13+)
$T(\mathscr{G}(n, p))=\delta$ a.a.s., \quad for $p \leq 1.1 \log n / n$;
$T(\mathscr{G}(n, p))<\delta$ a.a.s., for $p \geq 51 \log n / n$.

Question (Chen, Li, Lian)

What's the smallest p such that $T(\mathscr{G}(n, p))<\delta$?

Our results (i)

Theorem

For every $p=p(n) \in[0,1]$, a.a.s. $T(\mathscr{G}(n, p))=\min \left\{\delta,\left\lfloor\frac{\bar{d}}{2}\right\rfloor\right\}$. (Same holds throughout the random graph process.)

Theorem

$$
\text { Let } \beta=2 / \log (e / 2) \approx 6.51778
$$

- If $p=\frac{\beta\left(\log n-\frac{\log \log n}{2}\right)-\omega(1)}{n-1}$, then a.a.s. $\delta \leq\left\lfloor\frac{\bar{d}}{2}\right\rfloor$ in $\mathscr{G}(n, p)$.
- If $p=\frac{\beta\left(\log n-\frac{\log \log n}{2}\right)+\omega(1)}{n-1}$, then a.a.s. $\delta>\left\lfloor\frac{\bar{d}}{2}\right\rfloor$ in $\mathscr{G}(n, p)$.
(Same holds throughout the random graph process.)

Threshold for $T(\mathscr{G}(n, p))=\left\{\begin{array}{l}\delta \\ \left\lfloor\frac{\bar{d}}{2}\right\rfloor\end{array} \quad\right.$ at $p \sim \beta \frac{\log n}{n}$.

Our results (ii)

Theorem

- If $p=O(1 / n)$, then a.a.s. $A(\mathscr{G}(n, p)) \in\{k, k+1\}$, where $k>\frac{\bar{d}}{2}$.
- If $p=\omega(1 / n)$, then a.a.s. $A(\mathscr{G}(n, p)) \in\left\{\left\lceil\frac{\bar{d}}{2}\right\rceil,\left\lceil\frac{\bar{d}}{2}\right\rfloor+1\right\}$.

For most values of $p=\omega(1 / n)$, a.a.s. $A(\mathscr{G}(n, p))=\left\lceil\frac{\bar{d}}{2}\right\rceil$.
(Same holds throughout the random graph process.)

Corollary

Threshold for k-orientability of $\mathscr{G}(n, m)$ for $k \rightarrow \infty$ at $m \sim k n$.

Tutte and Nash-Williams

\mathcal{P} partition of $V(G)$; $m(\mathcal{P})=$ number of edges in $E(G)$ with ends in distinct parts of \mathcal{P}.

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of $V(G)$ satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$.
$T(G)$ is given by the smallest ratio $\left\lfloor\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right\rfloor$.

Tutte and Nash-Williams

\mathcal{P} partition of $V(G)$; $m(\mathcal{P})=$ number of edges in $E(G)$ with ends in distinct parts of \mathcal{P}.

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of $V(G)$ satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$.
$T(G)$ is given by the smallest ratio $\left\lfloor\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right\rfloor$.

Tutte and Nash-Williams

\mathcal{P} partition of $V(G)$; $m(\mathcal{P})=$ number of edges in $E(G)$ with ends in distinct parts of \mathcal{P}.

Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition \mathcal{P} of $V(G)$ satisfies $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$.
$T(G)$ is given by the smallest ratio $\left\lfloor\frac{m(\mathcal{P})}{|\mathcal{P}|-1}\right\rfloor$.

Proof STP number $\mathscr{G}(n, p)$

Trivial range: $\quad p \leq 0.9 \frac{\log n}{n}$
$\delta=T=0$.

Interesting range: $\quad p \geq 0.9 \frac{\log n}{n}$
Consider set of properties \mathcal{A} (degrees, expansion, density...).
Prove that

- $\mathscr{G}(n, p)$ satisfies \mathcal{A}, a.a.s.
- $\mathcal{A} \quad$ implies that $\quad \forall \mathcal{P}, \quad$ the ratio $\frac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq\left\{\begin{array}{l}\delta, \\ \bar{d} / 2 .\end{array}\right.$

Then, a.a.s. $T(\mathscr{G}(n, p))=\min \{\delta, \bar{d} / 2\}$.
Note: When $\delta>\bar{d} / 2$, we have a full decomposition of edges.

Proof Arboricity $\mathscr{G}(n, p)$ — Range $p=\omega(1 / n)$

Range $p=\omega(1 / n)$
Create G^{\prime} from $G=\mathscr{G}(n, p)$:
Add $o(n)$ new edges to $\mathscr{G}(n, p)$ so that

- $\delta^{\prime}>\bar{d}^{\prime} / 2$;
- properties \mathcal{A} are satisfied;
- $n-1 \mid m^{\prime}$.

Then $T\left(G^{\prime}\right)=\bar{d}^{\prime} / 2=\frac{m^{\prime}}{n-1}=A\left(G^{\prime}\right)$ and

$$
A(\mathscr{G}(n, p)) \in\left\{\left\lceil\frac{m}{n-1}\right\rceil,\left\lceil\frac{m}{n-1}\right\rceil+1\right\} .
$$

Proof Arboricity $\mathscr{G}(n, p)$ — Range $p=O(1 / n)$

Theorem (Nash-Williams '64)

Edges of G can be covered by t forests iff for every non-empty $S \subseteq V(G)$ we have $|E[S]| \leq t(|S|-1)$.

$$
A(G)=\max _{\emptyset \neq S \subseteq V(G)}\left[\frac{|E[S]|}{|S|-1}\right], \quad(\text { where } 0 / 0:=0)
$$

k-core

Largest subgraph with minimum degree k.

Theorem (follows from Hakimi '65 + Cain, Sanders, Wormald '07)
For $k \geq 2$,
if the density of the $(k+1)$-core of $\mathscr{G}(n, p)$ is at most $k+o(1)$, then a.a.s.
$\mathscr{G}(n, p)$ has no subgraph with density more than $k+o(1)$.

Proof Arboricity $\mathscr{G}(n, p)$ — Range $p=O(1 / n)$

Summary of the argument

If $p \leq 1 / n, \quad$ then $A \in\{1,2\}$ (easy).
If $p>1 / n$:

- Find k such that
- the $(k+1)$-core of $\mathscr{G}(n, p)$ has density at most $k+o(1)$;
- the k-core of $\mathscr{G}(n, p)$ has density greater than $(k-1)$.
- Then the densest subgraph of $\mathscr{G}(n, p)$ has density $>(k-1)$ and $\leq k+o(1)$.
- So $A \in\{k, k+1\}$.

Further work

- Extend results to random hypergraphs (easy).
- Extend results to other families of random graphs (work in progress for random geometric graphs, sparse graphs with a fix degree sequence).
- Study other graph parameters with similar characterisations following from matroid union (work in progress for random directed graphs).

Thank you

