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Motivation
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Spanning-tree packing (STP) number

Definition
T (G ) = maximum number of edge-disjoint spanning trees in G .

Example

T (G ) = 2.

Trivial upper bound

T (G ) ≤ min
{
δ,
⌊ d̄

2

⌋}
, where d̄

2 = m
n−1 .

An application

Measure of network strength/vulnerability.
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Arboricity

Definition
A(G ) = minimum number of spanning trees covering all edges of G ;

= minimum number of forests decomposing E (G ).

Example

A(G ) = 3.

Trivial lower bound

A(G ) ≥
⌈ d̄

2

⌉
, where d̄

2 = m
n−1 .

Some applications
Measure of density of subgraphs; k-orientability; load balancing.
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k-orientability and load balancing
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Problem and previous results

Theorem (Palmer, Spencer ’95)

T
(
G (n, p)

)
= δ a.a.s., for δ constant (p ∼ log n/n).

Theorem (Catlin, Chen, Palmer ’93){
T
(
G (n, p)

)
=
⌊ d̄

2

⌋
A
(
G (n, p)

)
=
⌈ d̄

2

⌉ a.a.s., for p = C (log n/n)1/3.

Theorem (Chen, Li, Lian ’13+)

T
(
G (n, p)

)
= δ a.a.s., for p ≤ 1.1 log n/n;

T
(
G (n, p)

)
< δ a.a.s., for p ≥ 51 log n/n.

Question (Chen, Li, Lian)

What’s the smallest p such that T
(
G (n, p)

)
< δ?
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Our results (i)

Theorem

For every p = p(n) ∈ [0, 1], a.a.s. T
(
G (n, p)

)
= min

{
δ,
⌊ d̄

2

⌋}
.

(Same holds throughout the random graph process.)

Theorem
Let β = 2/ log(e/2) ≈ 6.51778.

If p =
β(log n− log log n

2 )−ω(1)

n−1 , then a.a.s. δ ≤
⌊ d̄

2

⌋
in G (n, p).

If p =
β(log n− log log n

2 )+ω(1)

n−1 , then a.a.s. δ >
⌊ d̄

2

⌋
in G (n, p).

(Same holds throughout the random graph process.)

Threshold for T
(
G (n, p)

)
=

{
δ⌊ d̄

2

⌋ at p ∼ β log n
n .
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Our results (ii)

Theorem

If p = O(1/n), then a.a.s. A
(
G (n, p)

)
∈ {k , k + 1},

where k > d̄
2 .

If p = ω(1/n), then a.a.s. A
(
G (n, p)

)
∈ {
⌈ d̄

2

⌉
,
⌈ d̄

2

⌋
+ 1}.

For most values of p = ω(1/n), a.a.s. A
(
G (n, p)

)
=
⌈ d̄

2

⌉
.

(Same holds throughout the random graph process.)

Corollary

Threshold for k-orientability of G (n,m) for k →∞ at m ∼ kn.
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Tutte and Nash-Williams

P partition of V (G );
m(P) = number of edges in E (G )
with ends in distinct parts of P.

Theorem (Tutte ’61; Nash-Williams ’61)

A graph G has t edge-disjoint spanning trees iff every partition P
of V (G ) satisfies m(P) ≥ t(|P| − 1).

T (G ) is given by the smallest ratio
⌊

m(P)
|P|−1

⌋
.
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Proof STP number G (n, p)

Trivial range: p ≤ 0.9 log n
n

δ = T = 0.

Interesting range: p ≥ 0.9 log n
n

Consider set of properties A (degrees, expansion, density. . . ).

Prove that
G (n, p) satisfies A, a.a.s.

A implies that ∀P, the ratio
m(P)

|P| − 1
≥

{
δ,

d̄/2.

Then, a.a.s. T (G (n, p)) = min{δ, d̄/2}.

Note: When δ > d̄/2, we have a full decomposition of edges.
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Proof Arboricity G (n, p) — Range p = ω(1/n)

Range p = ω(1/n)

Create G ′ from G = G (n, p):

Add o(n) new edges to G (n, p) so that
δ′ > d̄ ′/2;
properties A are satisfied;
n − 1 | m′.

Then T (G ′) = d̄ ′/2 =
m′

n − 1
= A(G ′) and

A
(
G (n, p)

)
∈
{⌈ m

n−1

⌉
,
⌈ m

n−1

⌉
+ 1
}
.
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Proof Arboricity G (n, p) — Range p = O(1/n)

Theorem (Nash-Williams ’64)

Edges of G can be covered by t forests iff for every non-empty
S ⊆ V (G ) we have |E [S ]| ≤ t(|S | − 1).

A(G ) = max∅6=S⊆V (G)

⌈
|E [S ]|
|S | − 1

⌉
, (where 0/0 := 0).

k-core
Largest subgraph with minimum degree k .

Theorem (follows from Hakimi ’65 + Cain, Sanders, Wormald ’07)

For k ≥ 2,
if the density of the (k + 1)-core of G (n, p) is at most k + o(1),
then a.a.s.
G (n, p) has no subgraph with density more than k + o(1).
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Proof Arboricity G (n, p) — Range p = O(1/n)

Summary of the argument

If p ≤ 1/n, then A ∈ {1, 2} (easy).

If p > 1/n:

Find k such that

the (k + 1)-core of G (n, p) has density at most k + o(1);
the k-core of G (n, p) has density greater than (k − 1).

Then the densest subgraph of G (n, p) has density > (k − 1)
and ≤ k + o(1).

So A ∈ {k , k + 1}.
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Further work

Extend results to random hypergraphs (easy).
Extend results to other families of random graphs
(work in progress for random geometric graphs, sparse graphs
with a fix degree sequence).
Study other graph parameters with similar characterisations
following from matroid union
(work in progress for random directed graphs).
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Thank you

Gao, Pérez-Giménez, Sato Arboricity and spanning-tree packing in random graphs ISU 2014 15 / 15


