# Arboricity and spanning-tree packing in random graphs with an application to load balancing

Xavier Pérez-Giménez<sup>†</sup>

joint work with

Jane (Pu) Gao\* and Cristiane M. Sato†

†University of Waterloo

WATERLOO

\*University of Toronto



Iowa State University, February 2014

# Motivation



#### Definition

T(G) = maximum number of edge-disjoint spanning trees in G.



### Example

$$T(G)=2.$$

### Trivial upper bound

$$T(G) \leq \min \left\{ \delta, \lfloor \frac{\bar{d}}{2} \rfloor \right\},$$

where

$$\frac{\bar{d}}{2} = \frac{m}{n-1}.$$

### An application



#### Definition

T(G) = maximum number of edge-disjoint spanning trees in G.



### Example

$$T(G)=2.$$

### Trivial upper bound

$$T(G) \leq \min\left\{\delta, \left\lfloor \frac{\bar{d}}{2} \right\rfloor\right\},$$

where

$$\frac{\bar{d}}{2} = \frac{m}{n-1}.$$

### An application



#### Definition

T(G) = maximum number of edge-disjoint spanning trees in G.



### Example

$$T(G)=2.$$

### Trivial upper bound

$$T(G) \leq \min\left\{\delta, \lfloor \frac{\bar{d}}{2} \rfloor\right\}$$
,

where

$$\frac{\bar{d}}{2} = \frac{m}{n-1}.$$

### An application



#### Definition

T(G) = maximum number of edge-disjoint spanning trees in G.



#### Example

$$T(G)=2.$$

### Trivial upper bound

$$T(G) \leq \min \left\{ \delta, \lfloor \frac{\bar{d}}{2} \rfloor \right\},$$

where

$$\frac{\bar{d}}{2} = \frac{m}{n-1}.$$

### An application



# Arboricity

#### Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).



# Example

$$A(G) = 3.$$

#### Trivial lower bound

$$A(G) \geq \left\lceil \frac{\bar{d}}{2} \right\rceil$$
, where  $\frac{\bar{d}}{2} = \frac{m}{n-1}$ .

# Some applications

Measure of density of subgraphs; k-orientability; load balancing.

# Arboricity

#### Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).



# Example

$$A(G) = 3.$$

#### Trivial lower bound

$$A(G) \geq \left\lceil \frac{\bar{d}}{2} \right\rceil$$
, where  $\frac{\bar{d}}{2} = \frac{m}{n-1}$ .

# Some applications

Measure of density of subgraphs; k-orientability; load balancing.

# Arboricity

#### Definition

A(G) = minimum number of spanning trees covering all edges of G; = minimum number of forests decomposing E(G).



# Example

$$A(G) = 3.$$

#### Trivial lower bound

$$A(G) \geq \left\lceil \frac{\bar{d}}{2} \right\rceil$$
, where  $\frac{\bar{d}}{2} = \frac{m}{n-1}$ .

# Some applications

Measure of density of subgraphs; k-orientability; load balancing.

# k-orientability and load balancing



# k-orientability and load balancing



# k-orientability and load balancing



# Problem and previous results

# Theorem (Palmer, Spencer '95)

$$T(\mathscr{G}(n,p)) = \delta$$
 a.a.s., for  $\delta$  constant  $(p \sim \log n/n)$ .

# Theorem (Catlin, Chen, Palmer '93)

$$\begin{cases} T(\mathscr{G}(n,p)) = \lfloor \frac{\bar{d}}{2} \rfloor \\ A(\mathscr{G}(n,p)) = \lceil \frac{\bar{d}}{2} \rceil \end{cases} \quad \text{a.a.s.,} \quad \text{for } p = C(\log n/n)^{1/3}.$$

# Theorem (Chen, Li, Lian '13+)

$$T(\mathscr{G}(n,p)) = \delta$$
 a.a.s., for  $p \le 1.1 \log n/n$ ;  $T(\mathscr{G}(n,p)) < \delta$  a.a.s., for  $p \ge 51 \log n/n$ .

### Question (Chen, Li, Lian)

What's the smallest p such that  $T(\mathcal{G}(n,p)) < \delta$ ?



# Our results (i)

#### **Theorem**

For every  $p = p(n) \in [0,1]$ , a.a.s.  $T(\mathscr{G}(n,p)) = \min \left\{ \delta, \lfloor \frac{\bar{d}}{2} \rfloor \right\}$ . (Same holds throughout the random graph process.)

#### Theorem

Let  $\beta = 2/\log(e/2) \approx 6.51778$ .

• If 
$$p = \frac{\beta \left(\log n - \frac{\log \log n}{2}\right) - \omega(1)}{n-1}$$
, then a.a.s.  $\delta \leq \left\lfloor \frac{\bar{d}}{2} \right\rfloor$  in  $\mathscr{G}(n, p)$ .

• If 
$$p = \frac{\beta \left(\log n - \frac{\log \log n}{2}\right) + \omega(1)}{n-1}$$
, then a.a.s.  $\delta > \lfloor \frac{\bar{d}}{2} \rfloor$  in  $\mathscr{G}(n, p)$ .

(Same holds throughout the random graph process.)

Threshold for 
$$T(\mathscr{G}(n,p)) = \begin{cases} \delta \\ \lfloor \frac{\bar{d}}{2} \rfloor \end{cases}$$
 at  $p \sim \beta \frac{\log n}{n}$ .

- - - - - -

# Our results (ii)

#### Theorem

- ullet If p=O(1/n), then a.a.s.  $Aig(\mathscr{G}(n,p)ig)\in\{k,k+1\}$ , where  $k>rac{ar{d}}{2}.$
- If  $p = \omega(1/n)$ , then a.a.s.  $A(\mathscr{G}(n,p)) \in \{\lceil \frac{\bar{d}}{2} \rceil, \lceil \frac{\bar{d}}{2} \rfloor + 1\}$ .

For most values of  $p = \omega(1/n)$ , a.a.s.  $A(\mathscr{G}(n,p)) = \lceil \frac{\bar{d}}{2} \rceil$ .

(Same holds throughout the random graph process.)

## Corollary

Threshold for k-orientability of  $\mathscr{G}(n,m)$  for  $k \to \infty$  at  $m \sim kn$ .

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

# Tutte and Nash-Williams



 $\mathcal{P}$  partition of V(G);  $m(\mathcal{P}) = \text{number of edges in } E(G)$  with ends in distinct parts of  $\mathcal{P}$ .

# Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition  $\mathcal{P}$  of V(G) satisfies  $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$ .

T(G) is given by the smallest ratio  $\left\lfloor \frac{m(\mathcal{P})}{|\mathcal{P}|-1} \right\rfloor$ .



# Tutte and Nash-Williams



 $\mathcal{P}$  partition of V(G);  $m(\mathcal{P}) = \text{number of edges in } E(G)$  with ends in distinct parts of  $\mathcal{P}$ .

# Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition  $\mathcal{P}$  of V(G) satisfies  $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$ .

T(G) is given by the smallest ratio  $\left\lfloor \frac{m(\mathcal{P})}{|\mathcal{P}|-1} \right\rfloor$ .



# Tutte and Nash-Williams



 $\mathcal{P}$  partition of V(G);  $m(\mathcal{P}) = \text{number of edges in } E(G)$  with ends in distinct parts of  $\mathcal{P}$ .

# Theorem (Tutte '61; Nash-Williams '61)

A graph G has t edge-disjoint spanning trees iff every partition  $\mathcal{P}$  of V(G) satisfies  $m(\mathcal{P}) \geq t(|\mathcal{P}|-1)$ .

T(G) is given by the smallest ratio  $\left\lfloor \frac{m(\mathcal{P})}{|\mathcal{P}|-1} \right\rfloor$ .



# Proof STP number $\mathcal{G}(n, p)$

# Trivial range: $p \le 0.9 \frac{\log n}{n}$

$$\delta = T = 0$$
.

# Interesting range: $p \ge 0.9 \frac{\log n}{n}$

Consider set of properties  $\mathcal{A}$  (degrees, expansion, density...).

Prove that

- $\mathscr{G}(n,p)$  satisfies  $\mathcal{A}$ , a.a.s.
- ullet  $\mathcal{A}$  implies that  $\forall \mathcal{P}, \quad ext{the ratio } rac{m(\mathcal{P})}{|\mathcal{P}|-1} \geq \left\{ rac{\delta,}{d/2}. 
  ight.$

Then, a.a.s.  $T(\mathscr{G}(n,p)) = \min\{\delta, \bar{d}/2\}.$ 

*Note:* When  $\delta > \bar{d}/2$ , we have a full decomposition of edges.

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

# Proof Arboricity $\mathscr{G}(n,p)$ — Range $p = \omega(1/n)$

# Range $p = \omega(1/n)$

Create G' from  $G = \mathcal{G}(n, p)$ :

Add o(n) new edges to  $\mathcal{G}(n,p)$  so that

- $\delta' > \bar{d}'/2$ ;
- ullet properties  ${\cal A}$  are satisfied;
- $n-1 \mid m'$ .

Then 
$$T(G') = \overline{d}'/2 = \frac{m'}{n-1} = A(G')$$
 and

$$A(\mathscr{G}(n,p)) \in \left\{ \left\lceil \frac{m}{n-1} \right\rceil, \left\lceil \frac{m}{n-1} \right\rceil + 1 \right\}.$$

# Proof Arboricity $\mathscr{G}(n,p)$ — Range p = O(1/n)

### Theorem (Nash-Williams '64)

Edges of G can be covered by t forests iff for every non-empty  $S \subseteq V(G)$  we have  $|E[S]| \le t(|S|-1)$ .

$$A(G) = \max_{\emptyset \neq S \subseteq V(G)} \left\lceil \frac{|E[S]|}{|S|-1} \right\rceil, \qquad \text{(where } 0/0 := 0\text{)}.$$

#### k-core

Largest subgraph with minimum degree k.

# Theorem (follows from Hakimi '65 + Cain, Sanders, Wormald '07)

For k > 2.

if the density of the (k+1)-core of  $\mathcal{G}(n,p)$  is at most k+o(1), then a.a.s.

 $\mathcal{G}(n,p)$  has no subgraph with density more than k+o(1).

ISU 2014

# Proof Arboricity $\mathscr{G}(n,p)$ — Range p = O(1/n)

# Summary of the argument

If  $p \le 1/n$ , then  $A \in \{1, 2\}$  (easy).

If p > 1/n:

- Find k such that
  - the (k+1)-core of  $\mathcal{G}(n,p)$  has density at most k+o(1);
  - the k-core of  $\mathcal{G}(n,p)$  has density greater than (k-1).
- Then the densest subgraph of  $\mathcal{G}(n,p)$  has density > (k-1) and  $\leq k + o(1)$ .
- So  $A \in \{k, k+1\}$ .

### Further work

- Extend results to random hypergraphs (easy).
- Extend results to other families of random graphs (work in progress for random geometric graphs, sparse graphs with a fix degree sequence).
- Study other graph parameters with similar characterisations following from matroid union (work in progress for random directed graphs).

# Thank you

