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Motivational example

(Chalupa, Leath, Reich 1979)

Bootstrap percolation:
Given a connected graph,

Pick initial active vertices
(at random with prob. p).

Active vertices stay active.
Rule: inactive vertices with 2
active neighbours become
active.
Do all vertices become
active? (p-dissemination)
No (inactive community).
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Models

Our model:
Pick initial active vertices (at random with prob. p).
Active vertices stay active.
r -Majority Rule: inactive vertices with r more active than
inactive neighbours become active. (For this talk, r = 1.)
Goal: all vertices become active (p-dissemination)

Variations:
Rules: at least t active neighbours, (strict) majority rule,
probabilistic rules. . .

Goal: full/partial dissemination, fast dissemination.
Choice of initial set of active vertices: random, deterministic.
Graph: deterministic, random, real world. . .
Other: possibility of going back to inactive, more than two
possible states (cellular automaton).
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Sequences of graphs

Event An holds a.a.s. (asymptotically almost surely)
if limn→∞ P(An) = 1.

Critical probability:

(Gn)n∈N sequence of graphs of increasing order.
p+c (Gn) = inf{p ∈ [0, 1] : Gn p-disseminates a.a.s.}
p−c (Gn) = sup{p ∈ [0, 1] : Gn does not p-disseminate a.a.s.}
p−c (Gn) ≤ p+c (Gn). If equal, call it pc(Gn).

So

If p ≤ (1− ε)pc(Gn) then a.a.s. Gn does not p-disseminate;
If p ≥ (1 + ε)pc(Gn) then a.a.s. Gn p-disseminates.
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Some examples

Trivial example:
Let Kn be the complete graph on n vertices.
Then, pc(Kn) = 1/2.
Proof idea: a.a.s. all vertices have (1 + o(1))pn active neighbours.

Theorem (Balogh, Bollobás, Morris 2009):

Let Qn be the n-th dimensional hypercube (2n vertices).
Then, pc(Qn) = 1/2.

Our goal:

Find Gn with small pc(Gn) for the (strict) 1-majority model.
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Strict vs. nonstrict majority

Let [n]d be the d dimensional grid on nd vertices.

Theorem (Balogh, Bollobás, Duminil-Copin, Morris 2012):

For the 0-majority model, pc([n]d) = 0.

However:

For the 1-majority model, pc([n]d) = 1.

Proof:

If p < 1, a.a.s. there are Θ(nd) initially inactive d-cubes.
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Related work

(Back to the (strict) 1-majority model...)

Theorem (Balogh, Pittel 2007):

Let Gd ,n be a random d-regular graph on n vertices.
Then, for d ≥ 3 constant, pc(Gd ,n) = pd .

d 3 4 5 6 7 8 9
pd 0.5 0.667 0.275 0.397 0.269 0.354 0.275

. . .

limd→∞ pd = 0.5; min{pd : d ≥ 3} = p7 ≈ 0.269.
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Related work

Let Hd ,n denote a sequence of d-regular graphs of increasing order.

Rapaport, Suchan, Todinca, Verstraete 2011:

Theorem:

For any H3,n, p−c (H3,n) ≥ p3 = 1/2.

Conjecture:

For all d ≥ 3 and any Hd ,n, p−c (Hd ,n) ≥ pd .

Theorem:

For any sequence Hd ,n, p−c (Hd ,n) ≥

{
1/d d odd,
2/d d even.

Question:
Is there Gn s.t. pc(Gn) = 0?
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Our results

Theorem (Mitsche, P-G, Prałat 2015):

Suppose 106 (log log n)2/3

log1/3 n
≤ p(n) ≤ p0.

Define k =
⌊

1000
p log(1/p)

⌋
.

Then, Lk,n p-disseminates a.a.s.

Lk,n is a (certain type of) d = (4k +3)-regular graph on n2 vertices.

Corollary:
For any constant 0 < p < 1, there is a d-regular sequence Hd ,n

with d = Θ
( 1
p log(1/p)

)
s.t. p+c (Hd ,n) ≤ p.

Corollary:

If k →∞, then pc(Lk,n) = 0.
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Our graph

(Assume p > 0 small constant. Pick k = k(p) ∈ N large enough.)

n

n

Graph L̃k,n:

n × n lattice on a torus.
degree 4k + 2.
Activation rule: ≥ 2k + 2 active
neighbours.

Graph Lk,n:

(Assume n even.)
L̃k,n + add random perfect matching (with no multiple edges)
degree 4k + 3
Activation rule: ≥ 2k + 2 active neighbours.
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Proof strategy

Consider only L̃k,n:
Tessellate torus into square cells
of size t × t.

A.a.s. “most” cells are good.
A.a.s. there is a seed.
Deterministic spread over good
cells. →

Add random perfect matching:
Suppose there is inactive
community.
Necessary conditions.
A.a.s. are not satisfied.
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Good vertices

Definition
A vertex is good if

it is active; or
it has at least 3k/m active neighbours on the top-right,
bottom-right, top-left and bottom-left neighbourhoods.

v

k

Lemma
A.a.s. “most” vertices are good.
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Deterministic growth

k/m

2k/m

3k/m

... k
k

k

a+1              k

...

(          times    )

good environment
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Deterministic growth

k/m

2k/m

3k/m

... k
k

k

...

(          times    )
k

a+2              k

good environment
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Good cells

Good cell: all vertices inside or “close” to it are good.

Warning! We don’t have full independence.
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Percolative ingredients

Proposition:
Let Z be the largest “connected” set of
good cells.

A.a.s. |Z | is very large and “spread”.
A.a.s. Z contains an active seed.
A.a.s. ZC has only “small” connected
pieces.

Proof technique:
The set of good cells behaves like a 2-dependent percolation model.
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. . . and the matching!

Suppose all previous events (about good cells) hold
Add a perfect matching M.

Lemma:
If some inactive vertices survive, then
(deterministically):

Innactive communities belong to small
connected sets of cells.
Each community has at least 4 vertices
that must be matched to inactive
vertices by M.

Lemma:
A.a.s. a random perfect matching M cannot satisfy the above.
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Further strengthening

What about. . .
even degree?
stronger majority? (r -majority rule)

Answer:
Just add more perfect matchings!
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Thank you
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