

Asymptotic enumeration of sparse strongly connected digraphs by vertices and edges

Xavier Pérez Giménez, Nicholas C. Wormald

Graphs @ Ryerson Seminar

Strongly connected digraphs

How many?

Some old results:

- Moon Moser '66: Almost all $2^{n^{2}}$ digraphs on n vertices are strongly connected (2-paths)

Strongly connected digraphs

How many?

n vertices
m arcs

Some old results:

- Moon, Moser '66: Almost all $2^{n^{2}}$ digraphs on n vertices are strongly connected (2-paths)

Strongly connected digraphs

How many?

n vertices m arcs $\left(n \leq m \leq n^{2}\right)$

Some old results:

- Moon, Moser '66: Almost all $2^{n^{2}}$ digraphs on n vertices are strongly connected (2-paths)

Strongly connected digraphs

How many?

n vertices m arcs $\left(n \leq m \leq n^{2}\right)$

Some old results:

- Moon, Moser '66: Almost all $2^{n^{2}}$ digraphs on n vertices are strongly connected (2-paths)
- Palásti '66: If $m=\lfloor n \log n+\alpha n\rfloor$ for fixed α, then $\operatorname{Pr}($ strongly connected $) \rightarrow \exp \left(-2 e^{-\alpha}\right)$.

Strongly connected digraphs

How many?

n vertices m arcs $\left(n \leq m \leq n^{2}\right)$

Some old results:

- Moon, Moser '66: Almost all $2^{n^{2}}$ digraphs on n vertices are strongly connected (2-paths)
- Palásti '66: If $m=\lfloor n \log n+\alpha n\rfloor$ for fixed α, then $\operatorname{Pr}($ strongly connected $) \rightarrow \exp \left(-2 e^{-\alpha}\right)$.
- Wright '77: Recurrences for the exact number, for $m-n=O(1)$

Theorem (Cooper, Frieze '04):

Asymptotic formula for Pr (strongly connected) for a fixed 'nice' degree sequence and $(1+\epsilon) n \leq m=O(n)$.

Theorem (/ PG, Wormald '12):

The number of strongly connected digraphs is

$$
\sim \frac{(m-1)!\left(e^{\lambda}-1\right)^{2 n}}{2 \pi(1+\lambda-m / n) \lambda^{2 m}} \exp \left(-\lambda^{2} / 2\right) \frac{e^{\lambda}\left(e^{\lambda}-1-\lambda\right)^{2}}{\left(e^{2 \lambda}-e^{\lambda}-\lambda\right)\left(e^{\lambda}-1\right)},
$$

where λ is determined by $m / n=\lambda e^{\lambda} /\left(e^{\lambda}-1\right)$.

- For $m=O(n)$ and $m-n \gg n^{2 / 3}$. Explicit error estimates.
- For $m=O(n \log n)$ and $m-n \rightarrow \infty$. Also loop-free case.

Similar problems

- Bender, Canfield, McKay '90 / Pittel, Wormald '05 / van der Hofstad, Spencer '06: Number of connected graphs with n vertices and m edges
- Kemkes, Sato, Wormald '12: Number of 2-connected graphs with n vertices and m edges
- What about 3-connected graphs? Easy

Dicores

$$
\left(k^{+}, k^{-}\right) \text {-dicore: }
$$

\min outdegree $\geq k^{+} ;$min indegree $\geq k^{-}$ dicore $=(1,1)$-dicore

Theorem (PG,Wormald '12):

For $m=O(n \log n)$ such that $m-n \rightarrow \infty$,
the number of dicores is $\sim \frac{(m-1)!\left(e^{\lambda}-1\right)^{2 n}}{2 \pi(1+\lambda-m / n) \lambda^{2 m}} \exp \left(-\lambda^{2} / 2\right)$
Extension to $\left(k^{+}, k^{-}\right)$-dicores for fixed $k^{+}, k^{-} \in \mathbb{Z}^{+}$

It suffices to estimate the probability that a dicore is strongly connected!!

Dicores

$$
\left(k^{+}, k^{-}\right) \text {-dicore: }
$$

min outdegree $\geq k^{+} ;$min indegree $\geq k^{-}$
dicore = (1, 1)-dicore

Theorem (PG,Wormald '12):

For $m=O(n \log n)$ such that $m-n \rightarrow \infty$,
the number of dicores is $\sim \frac{(m-1)!\left(e^{\lambda}-1\right)^{2 n}}{2 \pi(1+\lambda-m / n) \lambda^{2 m}} \exp \left(-\lambda^{2} / 2\right)$.
Extension to (k^{+}, k^{-})-dicores for fixed $k^{+}, k^{-} \in \mathbb{Z}^{+}$.

It suffices to estimate the probability that a dicore is strongly connected!!

Dicores

$$
\left(k^{+}, k^{-}\right) \text {-dicore: }
$$

min outdegree $\geq k^{+} ;$min indegree $\geq k^{-}$

$$
\text { dicore }=(1,1) \text {-dicore }
$$

Theorem (PG,Wormald '12):

For $m=O(n \log n)$ such that $m-n \rightarrow \infty$,
the number of dicores is $\sim \frac{(m-1)!\left(e^{\lambda}-1\right)^{2 n}}{2 \pi(1+\lambda-m / n) \lambda^{2 m}} \exp \left(-\lambda^{2} / 2\right)$.
Extension to $\left(k^{+}, k^{-}\right)$-dicores for fixed $k^{+}, k^{-} \in \mathbb{Z}^{+}$.
It suffices to estimate the probability that a dicore is strongly connected!!

Sink-sets and source-sets

Sink-sets and source-sets

Plain and complex sink/source-sets

plain sink-set

plain source-set

strongly connected

no sink'source-cycte \&

no complex sink/source-set of $\leq m / 2 \operatorname{arcs}$

Plain and complex sink/source-sets

strongly connected

ho sink'source-cycte 8

no complex sink/source-set of $\leq m / 2 \operatorname{arcs}$

Plain and complex sink/source-sets

strongly connected
$\{$ no sink/source-cycle \&
no complex sink/source-set of $\leq m / 2$ arcs

Degree sequence and pairings

- Out-degree and in-degree sequences:

$$
\vec{d}=\left(d^{+}, d^{-}\right), \quad d^{+}=\left(d_{1}^{+}, \ldots, d_{n}^{+}\right), \quad d^{-}=\left(d_{1}^{-}, \ldots, d_{n}^{-}\right)
$$

- Choose as independent truncated Poisson:

- Pairing model $\mathcal{P}(\vec{d})$ - Condition on event 'Simple' (no multiple arcs)

Degree sequence and pairings

- Out-degree and in-degree sequences:

$$
\vec{d}=\left(d^{+}, d^{-}\right), \quad d^{+}=\left(d_{1}^{+}, \ldots, d_{n}^{+}\right), \quad d^{-}=\left(d_{1}^{-}, \ldots, d_{n}^{-}\right)
$$

- Choose as independent truncated Poisson:

$$
\operatorname{Pr}(Y=k)=\left\{\begin{array}{ll}
\frac{1}{e^{\lambda}-1} \frac{\lambda^{k}}{k!} & \text { if } k \geq 1 \\
0 & \text { if } k=0
\end{array}, \quad \mathbf{E} Y=\frac{\lambda e^{\lambda}}{e^{\lambda}-1}=\frac{m}{n}\right.
$$

- Pairing model $\mathcal{P}(\vec{d})$

Degree sequence and pairings

- Out-degree and in-degree sequences:

$$
\vec{d}=\left(d^{+}, d^{-}\right), \quad d^{+}=\left(d_{1}^{+}, \ldots, d_{n}^{+}\right), \quad d^{-}=\left(d_{1}^{-}, \ldots, d_{n}^{-}\right)
$$

- Choose as independent truncated Poisson:

$$
\operatorname{Pr}(Y=k)=\left\{\begin{array}{ll}
\frac{1}{e^{\lambda}-1} \frac{\lambda^{k}}{k!} & \text { if } k \geq 1 \\
0 & \text { if } k=0
\end{array}, \quad \mathbf{E} Y=\frac{\lambda e^{\lambda}}{e^{\lambda}-1}=\frac{m}{n}\right.
$$

- Condition on sum: $\sum_{i=1}^{n} d_{i}^{+}=\sum_{i=1}^{n} d_{i}^{-}=m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Degree sequence and pairings

- Out-degree and in-degree sequences:

$$
\vec{d}=\left(d^{+}, d^{-}\right), \quad d^{+}=\left(d_{1}^{+}, \ldots, d_{n}^{+}\right), \quad d^{-}=\left(d_{1}^{-}, \ldots, d_{n}^{-}\right)
$$

- Choose as independent truncated Poisson:

$$
\operatorname{Pr}(Y=k)=\left\{\begin{array}{ll}
\frac{1}{e^{\lambda}-1} \frac{\lambda^{k}}{k!} & \text { if } k \geq 1 \\
0 & \text { if } k=0
\end{array}, \quad \mathbf{E} Y=\frac{\lambda e^{\lambda}}{e^{\lambda}-1}=\frac{m}{n}\right.
$$

- Condition on sum: $\sum_{i=1}^{n} d_{i}^{+}=\sum_{i=1}^{n} d_{i}^{-}=m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Degree sequence and pairings

- Out-degree and in-degree sequences:

$$
\vec{d}=\left(d^{+}, d^{-}\right), \quad d^{+}=\left(d_{1}^{+}, \ldots, d_{n}^{+}\right), \quad d^{-}=\left(d_{1}^{-}, \ldots, d_{n}^{-}\right)
$$

- Choose as independent truncated Poisson:

$$
\operatorname{Pr}(Y=k)=\left\{\begin{array}{ll}
\frac{1}{e^{\lambda}-1} \frac{\lambda^{k}}{k!} & \text { if } k \geq 1 \\
0 & \text { if } k=0
\end{array}, \quad \mathbf{E} Y=\frac{\lambda e^{\lambda}}{e^{\lambda}-1}=\frac{m}{n}\right.
$$

- Condition on sum: $\sum_{i=1}^{n} d_{i}^{+}=\sum_{i=1}^{n} d_{i}^{-}=m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple’ (no multiple arcs)

Structure of the argument

- $m / n \rightarrow c \in(1, \infty)$
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- $m / n \rightarrow 1(m-n \rightarrow \infty)$
- Heart model
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- $m / n \rightarrow \infty(m / n=O(\log n))$
- Switchings

Structure of the argument

- $m / n \rightarrow c \in(1, \infty)$
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- Heart model
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- $m / n \rightarrow \infty(m / n=O(\log n))$
- Switchings

Exploration algorithm

no 'small' complex sink/source-sets!

Structure of the argument

- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- $m / n \rightarrow 1$ ($m-n \rightarrow \infty$)
- Heart model
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments

Heart model

$$
\begin{aligned}
& n^{\prime}=\left|\left\{i: \delta_{i}+d_{i} \geq 3\right\}\right| \\
& m^{\prime}=m-n+n^{\prime}
\end{aligned}
$$

Heart model

$$
\begin{aligned}
& n^{\prime}=\left|\left\{i: \delta_{i}+d_{i} \geq 3\right\}\right| \\
& m^{\prime}=m-n+n^{\prime}
\end{aligned}
$$

Exploration algorithm

no 'small' complex sink/source-sets!

Structure of the argument

- 'Small' complex sink/source-sets: analysis of a BFS algorithm - Sink/source-cycles: computation of moments
- $m / n \rightarrow 1(m-n \rightarrow \infty)$
- Heart model
- 'Small' complex sink/source-sets: analysis of a BFS algorithm
- Sink/source-cycles: computation of moments
- $m / n \rightarrow \infty(m / n=O(\log n))$
- Switchings

Denser digraphs

A.a.s. no sink/source-sets of size $1 \leq s \leq n / 2$.

Case $1 \leq s \leq(m / n)^{K}$ (switching argument):

Denser digraphs

A.a.s. no sink/source-sets of size $1 \leq s \leq n / 2$.

Case $1 \leq s \leq(m / n)^{K}$ (switching argument):

$$
\begin{gathered}
\underset{(m / 2)^{q}}{\geq(r+q)^{q}}
\end{gathered}
$$

Denser digraphs

A.a.s. no sink/source-sets of size $1 \leq s \leq n / 2$.

Case $1 \leq s \leq(m / n)^{K}$ (switching argument):

Denser digraphs

A.a.s. no sink/source-sets of size $1 \leq s \leq n / 2$.

Case $(m / n)^{K} \leq s \leq n / 2$:

Further work

Study the structure of the strongly connected component in the supercritical phase of the evolution of the random digraph.

Thank you!

