

Asymptotic enumeration of sparse strongly connected digraphs by vertices and edges

Xavier Pérez Giménez, Nicholas C. Wormald

Graphs @ Ryerson Seminar

Toronto, November, 2012

How many?

Some old results:

■ Moon, Moser '66: Almost all 2^{n^2} digraphs on n vertices are strongly connected (2-paths)

How many?

- Moon, Moser '66: Almost all 2^{n^2} digraphs on *n* vertices are strongly connected (2-paths)
- Palásti '66: If $m = \lfloor n \log n + \alpha n \rfloor$ for fixed α , then $\Pr(\text{strongly connected}) \to \exp(-2e^{-\alpha})$.
- Wright '77: Recurrences for the exact number, for m n = O(1)

How many?

- Moon, Moser '66: Almost all 2^{n^2} digraphs on n vertices are strongly connected (2-paths)
- Palásti '66: If $m = \lfloor n \log n + \alpha n \rfloor$ for fixed α , then **Pr**(strongly connected) $\rightarrow \exp(-2e^{-\alpha})$.
- Wright '77: Recurrences for the exact number, for m n = O(1)

How many?

- Moon, Moser '66: Almost all 2^{n^2} digraphs on n vertices are strongly connected (2-paths)
- Palásti '66: If $m = \lfloor n \log n + \alpha n \rfloor$ for fixed α , then **Pr**(strongly connected) $\rightarrow \exp(-2e^{-\alpha})$.
- Wright '77: Recurrences for the exact number, for m n = O(1)

How many?

- Moon, Moser '66: Almost all 2^{n^2} digraphs on n vertices are strongly connected (2-paths)
- Palásti '66: If $m = \lfloor n \log n + \alpha n \rfloor$ for fixed α , then **Pr**(strongly connected) $\rightarrow \exp(-2e^{-\alpha})$.
- Wright '77: Recurrences for the exact number, for m n = O(1)

Theorem (Cooper, Frieze '04):

Asymptotic formula for \mathbf{Pr} (strongly connected) for a fixed 'nice' degree sequence and $(1 + \epsilon)n \le m = O(n)$.

Theorem (Pittel '12 / PG, Wormald '12):

The number of strongly connected digraphs is

$$\sim \frac{(m-1)!(e^{\lambda}-1)^{2n}}{2\pi(1+\lambda-m/n)\lambda^{2m}}\exp(-\lambda^2/2)\frac{e^{\lambda}(e^{\lambda}-1-\lambda)^2}{(e^{2\lambda}-e^{\lambda}-\lambda)(e^{\lambda}-1)},$$

where λ is determined by $m/n = \lambda e^{\lambda}/(e^{\lambda} - 1)$.

- For m = O(n) and $m n \gg n^{2/3}$. Explicit error estimates.
- For $m = O(n \log n)$ and $m n \to \infty$. Also loop-free case.

Similar problems

- Bender, Canfield, McKay '90 / Pittel, Wormald '05 / van der Hofstad, Spencer '06: Number of connected graphs with n vertices and m edges
- Kemkes, Sato, Wormald '12: Number of 2-connected graphs with n vertices and m edges
- What about 3-connected graphs? Easy

Dicores

$$(k^+, k^-)$$
-dicore:

min outdegree
$$\geq k^+$$
; min indegree $\geq k^-$ dicore = (1, 1)-dicore

Theorem (PG,Wormald '12):

For $m = O(n \log n)$ such that $m - n \to \infty$,

the number of dicores is
$$\sim \frac{(m-1)!(e^{\lambda}-1)^{2n}}{2\pi(1+\lambda-m/n)\lambda^{2m}}\exp(-\lambda^2/2)$$

Extension to (k^+, k^-) -dicores for fixed $k^+, k^- \in \mathbb{Z}^+$

It suffices to estimate the probability that a dicore is strongly connected!

Dicores

$$(k^+, k^-)$$
-dicore:

min outdegree
$$\geq k^+$$
; min indegree $\geq k^-$ dicore = (1, 1)-dicore

Theorem (PG, Wormald '12):

For $m = O(n \log n)$ such that $m - n \to \infty$,

the number of dicores is
$$\sim \frac{(m-1)!(e^{\lambda}-1)^{2n}}{2\pi(1+\lambda-m/n)\lambda^{2m}}\exp(-\lambda^2/2).$$

Extension to (k^+, k^-) -dicores for fixed $k^+, k^- \in \mathbb{Z}^+$.

It suffices to estimate the probability that a dicore is strongly connected!!

Dicores

$$(k^+, k^-)$$
-dicore:

min outdegree
$$\geq k^+$$
; min indegree $\geq k^-$ dicore = (1, 1)-dicore

Theorem (PG, Wormald '12):

For $m = O(n \log n)$ such that $m - n \to \infty$,

the number of dicores is
$$\sim \frac{(m-1)!(e^{\lambda}-1)^{2n}}{2\pi(1+\lambda-m/n)\lambda^{2m}}\exp(-\lambda^2/2).$$

Extension to (k^+, k^-) -dicores for fixed $k^+, k^- \in \mathbb{Z}^+$.

It suffices to estimate the probability that a dicore is strongly connected!!

Sink-sets and source-sets

strongly connected

⇔

no sink/source-sets

Sink-sets and source-sets

Plain and complex sink/source-sets

plain source-set

Plain and complex sink/source-sets

strongly connected \iff no sink/source-cycle &
no complex sink/source-set of \leq

Plain and complex sink/source-sets

strongly connected \iff no sink/source-cycle & no complex sink/source-set of $\leq m/2$ arcs

Out-degree and in-degree sequences:

$$\vec{d} = (d^+, d^-), \quad d^+ = (d_1^+, \dots, d_n^+), \quad d^- = (d_1^-, \dots, d_n^-)$$

$$\mathbf{Pr}(Y=k) = \begin{cases} \frac{1}{e^{\lambda}-1} \frac{\lambda^k}{k!} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}, \quad \mathbf{E}Y = \frac{\lambda e^{\lambda}}{e^{\lambda}-1} = \frac{m}{n}$$

- Condition on sum: $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^- = m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Out-degree and in-degree sequences:

$$\vec{d} = (d^+, d^-), \quad d^+ = (d_1^+, \dots, d_n^+), \quad d^- = (d_1^-, \dots, d_n^-)$$

$$\mathbf{Pr}(Y=k) = \begin{cases} \frac{1}{e^{\lambda}-1} \frac{\lambda^k}{k!} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}, \quad \mathbf{E}Y = \frac{\lambda e^{\lambda}}{e^{\lambda}-1} = \frac{m}{n}$$

• Condition on sum:
$$\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^- = m$$

- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Out-degree and in-degree sequences:

$$\vec{d} = (d^+, d^-), \quad d^+ = (d_1^+, \dots, d_n^+), \quad d^- = (d_1^-, \dots, d_n^-)$$

$$\mathbf{Pr}(Y=k) = \begin{cases} \frac{1}{e^{\lambda}-1} \frac{\lambda^k}{k!} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}, \quad \mathbf{E}Y = \frac{\lambda e^{\lambda}}{e^{\lambda}-1} = \frac{m}{n}$$

- Condition on sum: $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^- = m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Out-degree and in-degree sequences:

$$\vec{d} = (d^+, d^-), \quad d^+ = (d_1^+, \dots, d_n^+), \quad d^- = (d_1^-, \dots, d_n^-)$$

$$\mathbf{Pr}(Y=k) = \begin{cases} \frac{1}{e^{\lambda}-1} \frac{\lambda^k}{k!} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}, \quad \mathbf{E}Y = \frac{\lambda e^{\lambda}}{e^{\lambda}-1} = \frac{m}{n}$$

- Condition on sum: $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^- = m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Out-degree and in-degree sequences:

$$\vec{d} = (d^+, d^-), \quad d^+ = (d_1^+, \dots, d_n^+), \quad d^- = (d_1^-, \dots, d_n^-)$$

$$\mathbf{Pr}(Y=k) = \begin{cases} \frac{1}{e^{\lambda}-1} \frac{\lambda^k}{k!} & \text{if } k \ge 1\\ 0 & \text{if } k = 0 \end{cases}, \quad \mathbf{E}Y = \frac{\lambda e^{\lambda}}{e^{\lambda}-1} = \frac{m}{n}$$

- Condition on sum: $\sum_{i=1}^{n} d_i^+ = \sum_{i=1}^{n} d_i^- = m$
- Pairing model $\mathcal{P}(\vec{d})$
- Condition on event 'Simple' (no multiple arcs)

Structure of the argument

- $m/n \rightarrow c \in (1, \infty)$
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $m/n \rightarrow 1 \ (m-n \rightarrow \infty)$
 - Heart model
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $m/n \rightarrow \infty$ $(m/n = O(\log n))$
 - Switchings

Structure of the argument

- $m/n \rightarrow c \in (1, \infty)$
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- \blacksquare $m/n \rightarrow 1 \ (m-n \rightarrow \infty)$
 - Heart model
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $\blacksquare m/n \to \infty \ (m/n = O(\log n))$
 - Switchings

no 'small' complex sink/source-sets!

Structure of the argument

- $\blacksquare m/n \to c \in (1,\infty)$
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $m/n \rightarrow 1 \ (m-n \rightarrow \infty)$
 - Heart model
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $m/n \rightarrow \infty$ ($m/n = O(\log n)$)
 - Switchings

Heart model

$$n' = |\{i : \delta_i + d_i \ge 3\}|$$

 $m' = m - n + n'$

Heart model

$$n' = |\{i : \delta_i + d_i \ge 3\}|$$

 $m' = m - n + n'$

no 'small' complex sink/source-sets!

Structure of the argument

- $m/n \rightarrow c \in (1, \infty)$
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- \blacksquare $m/n \rightarrow 1 \ (m-n \rightarrow \infty)$
 - Heart model
 - 'Small' complex sink/source-sets: analysis of a BFS algorithm
 - Sink/source-cycles: computation of moments
- $m/n \rightarrow \infty$ ($m/n = O(\log n)$)
 - Switchings

A.a.s. no sink/source-sets of size $1 \le s \le n/2$.

Case $1 \le s \le (m/n)^K$ (switching argument):

A.a.s. no sink/source-sets of size $1 \le s \le n/2$.

Case $1 \le s \le (m/n)^K$ (switching argument):

$$\xrightarrow{\geq (m/2)^q} \longleftrightarrow (r+q)^q$$

A.a.s. no sink/source-sets of size $1 \le s \le n/2$.

Case $1 \le s \le (m/n)^K$ (switching argument):

$$\frac{\geq (m/2)^q}{\leq (r+q)^q}$$

A.a.s. no sink/source-sets of size $1 \le s \le n/2$.

Case $(m/n)^K \le s \le n/2$:

Further work

Study the structure of the strongly connected component in the supercritical phase of the evolution of the random digraph.

Thank you!

