A probabilistic version of the game of zombies and survivors on graphs

Xavier Pérez-Giménez ${ }^{\dagger}$

joint work with
Anthony Bonato ${ }^{\dagger}$, Dieter Mitsche* and Paweł Prałat ${ }^{\dagger}$

${ }^{\dagger}$ Ryerson University

*Université de Nice Sophia-Antipolis
Graphs @ Ryerson, September 2015

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies
1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies
1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombies and survivor: who wants to live forever?

4 zombies

1 survivor

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
- Zombies move first toward the survivor (ties solved at random).
- Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Basic definitions

Zombie number

$z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k$ zombies win $) \geq 1 / 2\}$

Basic definitions

Zombie number
$z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k$ zombies win $) \geq 1 / 2\}$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Basic definitions

Zombie number
$z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k$ zombies win $) \geq 1 / 2\}$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Basic definitions

Zombie number

$$
z(G)=\min \{k \in \mathbb{N}: \mathbf{P}(k \text { zombies win }) \geq 1 / 2\}
$$

Observe: $z(G) \geq c(G)$, where $c(G)$ is the cop number.

Price of being undead

$$
Z(G)=z(G) / c(G)
$$

$$
c(G)=2, \quad z(G)=\Theta(n)
$$

Trees: $z(G)=c(G)=1$

Cycle

Theorem
If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Cycle

Theorem
If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem

If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem

If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem

If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem

If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem
If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem
If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Cycle

Theorem
If $n \geq 27$, then $z\left(C_{n}\right)=4$ and $Z\left(C_{n}\right)=2$.

Proof (idea):

Projective plane

Projective plane P_{q} of order q
(q prime power)

Graph G_{q}

Incidence graph of P_{q} :

Projective plane

Projective plane P_{q} of order q
(q prime power)

Projective plane

Projective plane P_{q} of order q
(q prime power)

L

Projective plane

Projective plane P_{q} of order q
(q prime power)

Graph G_{q}

```
Incidence graph of \(P_{q}\) :
- \((P, L)\)-bipartite
- \(|P|=|L|=q^{2}+q+1\)
- \((q+1)\)-regular
```


L

Projective plane

Projective plane P_{q} of order q
(q prime power)

Projective plane

Projective plane P_{q} of order q
(q prime power)

Projective plane

Theorem
 $z\left(G_{q}\right)=2 q+\Theta(\sqrt{q}) . \quad Z\left(G_{q}\right) \sim 2$.

Projective plane

Theorem
$z\left(G_{q}\right)=2 q+\Theta(\sqrt{q}) . \quad Z\left(G_{q}\right) \sim 2$.

Initially: k_{P} zombies in P and k_{L} zombies in $L \quad\left(k=k_{P}+k_{L}\right)$

Projective plane

Theorem

$$
z\left(G_{q}\right)=2 q+\Theta(\sqrt{q}) . \quad Z\left(G_{q}\right) \sim 2
$$

Initially: k_{P} zombies in P and k_{L} zombies in $L \quad\left(k=k_{P}+k_{L}\right)$

Lemma

- $k \leq 2 q-\omega \sqrt{q} \Longrightarrow$ a.a.s. $k_{P}, k_{L} \leq q-1$
(survivor strategy).

Projective plane

Theorem

$$
z\left(G_{q}\right)=2 q+\Theta(\sqrt{q}) . \quad Z\left(G_{q}\right) \sim 2 .
$$

Initially: k_{P} zombies in P and k_{L} zombies in $L \quad\left(k=k_{P}+k_{L}\right)$

Lemma

- $k \leq 2 q-\omega \sqrt{q} \Longrightarrow$ a.a.s. $k_{P}, k_{L} \leq q-1$ (survivor strategy).
- $k \geq 2 q+\omega \sqrt{n} \Longrightarrow$ a.a.s. $k_{P}, k_{L} \geq q$
(zombie strategy).

Projective plane: observation

Projective plane: observation

Projective plane: observation

Projective plane: observation

Projective plane: observation

Survivor cannot stop!

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Projective plane: zombies' strategy

It's zombies' turn to move...

Zombies block all ways of escape with positive probability!

Projective plane: survivor's strategy

It's the survivor's turn to move. . .

Projective plane: survivor's strategy

It's the survivor's turn to move. . .

Projective plane: survivor's strategy

It's the survivor's turn to move. . .

Projective plane: survivor's strategy

It's the survivor's turn to move. . .

Projective plane: survivor's strategy

It's the survivor's turn to move. . .

The survivor can always escape for one more step!

Hypercube

Q_{n}

- Vertices of Q_{n} are $\{0,1\}$-strings of length n.
- Q_{n} is (E, O)-bipartite
- E strings with even number of 1 's.
- O strings with odd number of 1 's.

Theorem
$z\left(Q_{n}\right)=\frac{2 n}{3}+\Theta(\sqrt{n}) . \quad Z\left(Q_{n}\right) \sim 4 / 3$.

Theorem

$z\left(Q_{n}\right)=\frac{2 n}{3}+\Theta(\sqrt{n}) . \quad Z\left(Q_{n}\right) \sim 4 / 3$.

Initially: $\quad k_{E}$ zombies in E and k_{O} zombies in $O \quad\left(k=k_{E}+k_{O}\right)$

Hypercube

Theorem
$z\left(Q_{n}\right)=\frac{2 n}{3}+\Theta(\sqrt{n}) . \quad Z\left(Q_{n}\right) \sim 4 / 3$.

Initially: $\quad k_{E}$ zombies in E and k_{O} zombies in $O \quad\left(k=k_{E}+k_{O}\right)$

Lemma

- $k \leq \frac{2 n}{3}-\omega \sqrt{n} \Longrightarrow$ a.a.s. $k_{E}, k_{O}<\frac{n}{3}$
(survivor strategy).

Hypercube

Theorem

$$
z\left(Q_{n}\right)=\frac{2 n}{3}+\Theta(\sqrt{n}) . \quad Z\left(Q_{n}\right) \sim 4 / 3
$$

Initially: $\quad k_{E}$ zombies in E and k_{O} zombies in $O \quad\left(k=k_{E}+k_{O}\right)$

Lemma

- $k \leq \frac{2 n}{3}-\omega \sqrt{n} \Longrightarrow$ a.a.s. $k_{E}, k_{O}<\frac{n}{3}$
(survivor strategy).
- $k \geq \frac{2 n}{3}+\omega \sqrt{n} \Longrightarrow$ a.a.s. $k_{E}, k_{O}>\frac{n}{3}$
(zombie strategy).
(The survivor can always find a safe start.)
$S_{i}=$ set of zombies at distance i from survivor $\left(\left|S_{1}\right|,\left|S_{2}\right|<n / 3\right)$

Hypercube: survivor's strategy

(The survivor can always find a safe start.)
$S_{i}=$ set of zombies at distance i from survivor $\left(\left|S_{1}\right|,\left|S_{2}\right|<n / 3\right)$

At each step:

- If $S_{1}=\emptyset$, then survivor stays put.
- Otherwise, survivor can find a move away from S_{1}, S_{2}.

Hypercube: survivor's strategy

(The survivor can always find a safe start.)
$S_{i}=$ set of zombies at distance i from survivor $\left(\left|S_{1}\right|,\left|S_{2}\right|<n / 3\right)$

At each step:

- If $S_{1}=\emptyset$, then survivor stays put.
- Otherwise, survivor can find a move away from S_{1}, S_{2}.

The survivor can always escape for one more step!

Hypercube: zombies' strategy
Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$
It never increases (after each zombie move).

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).
Uniform coordinates (shared by all players)

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).
Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).
Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).
Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances $\vec{d}=\left(d_{1}, \ldots, d_{k}\right)$

It never increases (after each zombie move).
Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Every n steps, \vec{d} decreases with positive probability.

Grids

G_{n}

$n \times n$ square grid

$$
T_{n}
$$

$n \times n$ toroidal grid

Grids

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Grids

Theorem
 For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)$, while $c\left(T_{n}\right)=3$.
So $Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)$

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Theorem

For $n \geq 2, z\left(G_{n}\right)=2$. Hence, $Z\left(G_{n}\right)=1$.

However...

Theorem

$$
\begin{aligned}
& z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n), \text { while } c\left(T_{n}\right)=3 \text {. } \\
& \text { So } Z\left(T_{n}\right) \geq \sqrt{n} /(\omega \log n)
\end{aligned}
$$

Goal of the survivor:

Torus: survivor's strategy

Torus: survivor's strategy

Torus: survivor's strategy

Torus: survivor's strategy

Torus: survivor's strategy

Open questions

- Upper bound on $z\left(T_{n}\right)$.
- Mixed cop-zombie model: how many cops are needed to lead a team of zombies?

Thank you

