A probabilistic version of the game of zombies and survivors on graphs

Xavier Pérez-Giménez[†]

joint work with

Anthony Bonato[†], Dieter Mitsche^{*} and Paweł Prałat[†]

[†]Ryerson University

*Université de Nice Sophia-Antipolis

Graphs @ Ryerson, September 2015

G@R 2015

1 / 19

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Game rules

- 2 players (1 survivor vs. k zombies) on vertices of G.
- Initial position: zombies (random); survivor (deterministic).
- At each step:
 - Zombies move first toward the survivor (ties solved at random).
 - Survivor moves next to any neighbour or stays put.
- Zombies win if one zombie eventually eats the survivor.

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \geq 1/2
ight\}$$

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015

4 / 19

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● 画 ● の Q @

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

G@R 2015

3

・ 戸 ト ・ 三 ト ・

4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead

Z(G) = z(G) / c(G)

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat
Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

▶ ◀ 볼 ▶ 볼 ∽ ९.여 G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015 4 / 19

n-5

▶ → @ ▶ → 意 ▶ → 意 ▶ … 意

 $c(G) = 2, \quad z(G) = \Theta(n)$

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015 4 / 19

n-5

▶ → @ ▶ → 意 ▶ → 意 ▶ … 意

 $c(G) = 2, \quad z(G) = \Theta(n)$

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015 4 /

4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

$$c(G) = 2, \quad z(G) = \Theta(n)$$

Zombies and survivors on graphs

 ►
 E
 D<</th>
 Q

 G@R 2015
 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

$$c(G) = 2, \quad z(G) = \Theta(n)$$

Zombies and survivors on graphs

G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

: n-5

$$c(G) = 2, \quad z(G) = \Theta(n)$$

Zombies and survivors on graphs

G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

$$c(G) = 2, \quad z(G) = \Theta(n)$$

Zombies and survivors on graphs

G@R 2015 4 / 19

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombie number

$$z(G) = \min \left\{ k \in \mathbb{N} : \mathbf{P}(k \text{ zombies win}) \ge 1/2 \right\}$$

Observe: $z(G) \ge c(G)$, where c(G) is the cop number.

Price of being undead Z(G) = z(G) / c(G)

Trees:
$$z(G) = c(G) = 1$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

n-5

(사람) 사용이 사용이 문

c(G) = 2, $z(G) = \Theta(n)$

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへの

5 / 19

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

If
$$n \ge 27$$
, then $z(C_n) = 4$ and $Z(C_n) = 2$.

Projective plane P_q of order q(q prime power)

A (10) N (10)

Projective plane P_q of order q(q prime power)

< ∃ ►

Projective plane P_q of order q(q prime power)

Graph G_q

Incidence graph of P_q :

• (P, L)-bipartite

•
$$|P| = |L| = q^2 + q + 1$$

• = • •

Projective plane P_q of order q(q prime power)

Graph G_q

Incidence graph of P_q :

- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- (q+1)-regular

< ∃ >

Projective plane P_q of order q (q prime power)

Graph G_q

Incidence graph of P_q :

- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- (q+1)-regular
- $\forall p_1, p_2 \in P$: $|N(p_1) \cap N(p_2)| = 1$

4 ∃ ≥ 4

Projective plane P_q of order q(q prime power)

Graph G_q

Incidence graph of P_q :

- (P, L)-bipartite
- $|P| = |L| = q^2 + q + 1$
- (q+1)-regular
- $\forall p_1, p_2 \in P$: $|N(p_1) \cap N(p_2)| = 1$
- $\forall \ell_1, \ell_2 \in L$: $|N(\ell_1) \cap N(\ell_2)| = 1$

$z(G_q) = 2q + \Theta(\sqrt{q}).$ $Z(G_q) \sim 2.$

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015

<ロト < 四ト < 三ト < 三ト = 三三

୬ < ୍ର 7 / 19

$z(G_q) = 2q + \Theta(\sqrt{q}).$ $Z(G_q) \sim 2.$

Initially: k_P zombies in P and k_L zombies in L $(k = k_P + k_L)$

G@R 2015

<ロト < 四ト < 三ト < 三ト = 三三

7 / 19

$$z(G_q) = 2q + \Theta(\sqrt{q}).$$
 $Z(G_q) \sim 2.$

Initially: k_P zombies in P and k_L zombies in L $(k = k_P + k_L)$

• $k \le 2q - \omega \sqrt{q} \implies$ a.a.s. $k_P, k_L \le q - 1$ (survivor strategy).

Bonato, Mitsche, Pérez-Giménez, Prałat

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$z(G_q) = 2q + \Theta(\sqrt{q}).$$
 $Z(G_q) \sim 2.$

Initially: k_P zombies in P and k_L zombies in L $(k = k_P + k_L)$

Lemma• $k \leq 2q - \omega\sqrt{q} \implies$ a.a.s. $k_P, k_L \leq q - 1$
(survivor strategy).• $k \geq 2q + \omega\sqrt{n} \implies$ a.a.s. $k_P, k_L \geq q$
(zombie strategy).

Bonato, Mitsche, Pérez-Giménez, Prałat

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Projective plane: observation

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015 8

- 2

イロト イヨト イヨト イヨト

クへで 8 / 19

Projective plane: observation

G@R 2015

<ロト < 四ト < 三ト < 三ト = 三三

୬୯୯ <mark>8 / 19</mark>

Projective plane: observation

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015

<ロト < 四ト < 三ト < 三ト = 三三

୬୯୯ 8 / 19
Projective plane: observation

G@R 2015

<ロト < 四ト < 三ト < 三ト = 三三

Projective plane: observation

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015 8

<ロト < 四ト < 三ト < 三ト = 三三

୬ ଏ ୯ <mark>8 / 19</mark>

Projective plane: observation

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015 8

- 2

イロト イロト イヨト イヨト

クへで <mark>8 / 19</mark>

Survivor cannot stop!

Bonato,	Mitsc	he, P	érez-(Giménez,	Prałat	1
---------	-------	-------	--------	----------	--------	---

イロト イポト イヨト イ

E

3

9 / 19

→ Ξ →

3

→ Ξ →

米田 トイモト イモト

୬ ୦ ୦୦ ୨ / 19

1

・ 伺 ト ・ ヨ ト ・ ヨ ト

DQC

9 / 19

1

э

→ Ξ →

э

→ Ξ →

3

・ 同 ト ・ ヨ ト ・ ヨ ト

3

・ 同 ト ・ ヨ ト ・ ヨ ト

G@R 2015

・ 同 ト ・ ヨ ト ・ ヨ ト

10 / 19

3

G@R 2015

・ 同 ト ・ ヨ ト ・ ヨ ト

10 / 19

3

G@R 2015

Hypercube

- Vertices of Q_n are $\{0,1\}$ -strings of length n.
- Q_n is (E, O)-bipartite
- *E* strings with even number of 1's.
- O strings with odd number of 1's.

G@R 2015 11 / 19

э

Sac

< 31

< A

$$z(Q_n)=\frac{2n}{3}+\Theta(\sqrt{n}). \qquad Z(Q_n)\sim 4/3.$$

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● 画 ● の Q @ G@R 2015

$z(Q_n)=\frac{2n}{3}+\Theta(\sqrt{n}). \qquad Z(Q_n)\sim 4/3.$

Initially: k_E zombies in E and k_O zombies in O ($k = k_E + k_O$)

12 / 19

$$z(Q_n)=\frac{2n}{3}+\Theta(\sqrt{n}). \qquad Z(Q_n)\sim 4/3.$$

Initially: k_E zombies in E and k_O zombies in O $(k = k_E + k_O)$

• $k \leq \frac{2n}{3} - \omega \sqrt{n} \implies$ a.a.s. $k_E, k_O < \frac{n}{3}$ (survivor strategy).

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015 12 / 19

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

$$z(Q_n)=\frac{2n}{3}+\Theta(\sqrt{n}). \qquad Z(Q_n)\sim 4/3.$$

Initially: k_E zombies in E and k_O zombies in O $(k = k_E + k_O)$

Lemma • $k \leq \frac{2n}{3} - \omega\sqrt{n} \implies$ a.a.s. $k_E, k_O < \frac{n}{3}$ (survivor strategy). • $k \geq \frac{2n}{3} + \omega\sqrt{n} \implies$ a.a.s. $k_E, k_O > \frac{n}{3}$ (zombie strategy).

Bonato, Mitsche, Pérez-Giménez, Prałat

G@R 2015 12 / 19

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Hypercube: survivor's strategy

(The survivor can always find a safe start.)

 S_i = set of zombies at distance *i* from survivor ($|S_1|, |S_2| < n/3$)

Hypercube: survivor's strategy

(The survivor can always find a safe start.)

 S_i = set of zombies at distance *i* from survivor ($|S_1|, |S_2| < n/3$)

At each step:

- If $S_1 = \emptyset$, then survivor stays put.
- Otherwise, survivor can find a move away from S_1, S_2 .

Hypercube: survivor's strategy

(The survivor can always find a safe start.)

 S_i = set of zombies at distance *i* from survivor ($|S_1|, |S_2| < n/3$)

At each step:

- If $S_1 = \emptyset$, then survivor stays put.
- Otherwise, survivor can find a move away from S_1, S_2 .

Vector of distances
$$\vec{d} = (d_1, \ldots, d_k)$$

It never increases (after each zombie move).

G@R 2015

(日) (國) (臣) (臣) (臣)

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

Bonato, Mitsche, Pérez-Giménez, Prałat

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

• If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

• If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Vector of distances $\vec{d} = (d_1, \ldots, d_k)$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

• If the survivor flips a non-uniform coordinate, then \vec{d} decreases

Bonato, Mitsche, Pérez-Giménez, Prałat

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Hypercube: zombies' strategy

Vector of distances
$$ec{d}=(d_1,\ldots,d_k)$$

It never increases (after each zombie move).

Uniform coordinates (shared by all players)

- If the survivor flips a non-uniform coordinate, then \vec{d} decreases
- If the survivor flips a uniform coordinate, then the number of uniform coordinates decreases with positive probability.

Grids

 G_n T_n

 $n \times n$ square grid

 $n \times n$ toroidal grid

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

G@R 2015

15 / 19

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

For $n \ge 2$, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Bonato, Mitsche, Pérez-Giménez, Prałat

Zombies and survivors on graphs

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の Q () G@R 2015

16 / 19

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

Theorem

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

Bonato, Mitsche, Pérez-Giménez, Prałat

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ― ヨ … のへで G@R 2015

16 / 19

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

For
$$n \ge 2$$
, $z(G_n) = 2$. Hence, $Z(G_n) = 1$.

However...

$$z(T_n) \ge \sqrt{n}/(\omega \log n)$$
, while $c(T_n) = 3$.
So $Z(T_n) \ge \sqrt{n}/(\omega \log n)$

€ 990

イロト イロト イヨト イヨト

€ 990

17 / 19

€ 990

Bonato, Mitsche, Pérez-Giménez, Prałat Zombies and survivors on graphs G@R 2015 17 / 19

イロト イロト イヨト イヨト

€ 990

€ 990

イロト イロト イヨト イヨト

€ 990

17 / 19

Bonato, Mitsche, Pérez-Giménez, Prałat Zombies and survivors on graphs G@R 2015 17 / 19

イロト イロト イヨト イヨト

€ 990

€ 990

€ 990

€ 990

€ 990

 Bonato, Mitsche, Pérez-Giménez, Prałat
 Zombies and survivors on graphs
 G@R 2015

イロト イロト イヨト イヨト

€ 990

17 / 19

015 17 / 19

€ 990

E 99€

◆ロト ◆掃ト ◆注ト ◆注ト 注目 のへで

◆ロト ◆掃ト ◆注ト ◆注ト 注目 のへで

17 / 19

€ 990

イロト イロト イヨト イヨト

€ 990

Bonato, Mitsche, Pérez-Giménez, Prałat Zombies and survivors on graphs

G@R 2015 17

3

イロト イポト イヨト イヨト

୬ ଏ (୦ 17 / 19

€ 990

€ 990

G@R 2015 17 / 19

€ 990

イロト イロト イヨト イヨト

イロト イロト イヨト イヨト

€ 990

17 / 19

• •

- Upper bound on $z(T_n)$.
- Mixed cop-zombie model: how many cops are needed to lead a team of zombies?

G@R 2015 18 / 19

3

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで